VOLUNTARY CLEANUP INVESTIGATION REPORT

Phase II Environmental Site Assessment

Former City Garage Operations City of Leavenworth, Kansas

City Project Number 2020-930

2109 South 3rd Street Leavenworth, Kansas 66048

Project Code: C4-052-73682

Kansas Department of Health and Environment Bureau of Environmental Remediation Voluntary Cleanup and Property Redevelopment Program 1000 SW Jackson, Suite 410 Topeka, Kansas 66612

Project Number 27220109.01 November 2, 2020

> 8575 W. 110th St. Overland Park, KS 66210 913-681-0030

November 2, 2020 Project 27220109.01

Mike McDonald, P.E. Director of Public Works City of Leavenworth 100 North 5th Street Leavenworth, Kansas 66048

Subject: Voluntary Cleanup Investigation Report

Former City Garage/Old City Landfill City Project Number 2020-930 2109 South 3rd Street Leavenworth, Kansas

Dear Mr. McDonald:

Enclosed is our Voluntary Cleanup Investigation Report (VCI Report) prepared for the Former City Garage/Old City Landfill located at 2109 South 3rd Street, Leavenworth, Kansas. This environmental assessment was conducted in accordance with our VCI Work Plan submitted to the Kansas Department of Health & Environment (KDHE) – Bureau of Environmental Remediation (BER), Voluntary Cleanup and Property Redevelopment Program (VCPRP). The VCI Work Plan was approved by the VCPRP in project correspondence dated September 4, 2020. A copy of the VCI Report should be submitted to the VCPR for their review.

Please contact us at (913) 749-0706 if you have questions regarding the VCI Report. SCS Engineers greatly appreciates the opportunity to assist you with this project.

Sincerely,

After D Jamm

Jeff Janzen Staff Professional SCS Engineers

jdj/dnd

Doug Dreiling, LRC Senior Environmental Consultant SCS Engineers

Table of Contents

Section		Page
1.0	EXECUTIVE SUMMARY	1
	PRELIMINARY SUMMARY	1
	Recommendations	4
2.0	INTRODUCTION	5
2.2	PROPERTY BACKGROUND	5
3.0	INVESTIGATIVE ACTIVITIES	17
	3.1 VCI Assessment Objectives and Approach	17
	3.2 Field Activities	
4.0	PHYSICAL PROPERTY CHARACTERISTICS	23
	4.1 Geology and Hydrogeology	
	4.2 Analytical Results	
	4.3 QA/QC Sampling Analytical Results	24
5.0	NATURE AND EXTENT OF CONTAMINATION	27
6.0	CONTAMINANT FATE AND TRANSPORT	32
	6.1 Potential Migration Routes	32
	6.2 Contaminant Characteristics	33
	6.3 Contaminant Migration	
7.0	IDENTIFICATION OF POTENTIAL RECEPTORS AND LAND USE	35
	7.1 Receptors	
	7.2 Potential Risk	38
	7.3 Land Use	
8.0	SUMMARY AND CONCLUSIONS	
	8.1 Summary of VCI Results	
	8.1.1 Nature and Extent of Contamination	
	8.1.2 Contaminant Fate and Transport	
	8.1.3 Identified Receptors/Risk	48
	8.2 Conclusions	
	8.2.1 Data Limitations	
	8.2.2 Recommendations	51
9.0	TABLES	53
	FIGURES	
11.0	REFERENCES	55
12.0	ATTACHMENTS	57

List of Tables – Section 9.0

- Table 1A Applicable Soil Analytical Results Previous and Current Assessments, TCLP and TPH Analysis
- Table 1B Applicable Soil Analytical Results Previous and Current Assessments, VOCs, SVOCs, and PCBs Analysis
- Table 1C Applicable Soil Analytical Results Previous and Current Assessments, RCRA Metals and TCLP Metals Analysis
- Table 1D Applicable Soil Analytical Results Previous and Current Assessments, SVOCs, D,D,D-4,4' and PCBs Analysis
- Table 2A Applicable Groundwater Analytical Results Previous and Current Assessments, VOC Analysis
- Table 2B Applicable Groundwater Analytical Results Previous and Current Assessments, TPH, SVOC and D,D,D-4,4' Analysis
- Table 2C Applicable Groundwater Analytical Results Previous and Current Assessments, RCRA Metals Analysis
- Table 3 Previous Soil Vapor Analytical Results Previous Soil Vapor Analytical Results
- Table 4 Current Indoor Air Analytical Results VOC Analysis
- Table 5 Groundwater Elevation Data

List of Figures – Section 10.0

- Figure 1 Vicinity Map
- Figure 2 Site Property Boundary
- Figure 3 Former Locations of City Garage Operations
- Figure 4A Prior Assessment Locations Soil
- Figure 4A-1 Soil Results for TPH, VOCs, SVOCs, PCBs and Metals
- Figure 4B Site Detail and Prior Assessment Locations Soil
- Figure 5A Prior Assessment Locations Groundwater
- Figure 5A-1 Groundwater Results for VOCs, TPH, & SVOCs
- Figure 5A-2 Groundwater Results RCRA 8 Metals
- Figure 6 Soil Gas Previous Results
- Figure 7 SCS Phase II ESA Locations

- Figure 8- Air Sampling Locations
- Figure 9 Location of Former Five Mile Creek Channel Prior to USACE Realignment
- Figure 10-A Cross Section A A'
- Figure 10-B Cross Section B B'
- Figure 11 Groundwater Potentiometric Surface Map September 21, 2020
- Figure 12-A Previous and Current Soil Results for TPH, VOCs, SVOCs and PCBs
- Figure 12-B Previous and Current Soil Results for Metals
- Figure 13-A Combined Groundwater Results for VOCs, TPH and SVOCs
- Figure 13-B Combined Groundwater Results RCRA 8 Metals
- Figure 14 TPH Concentrations in Groundwater and TPH-MRH Isoconcentration Map
- Figure 15 Approximate Location of Lakes Auto Salvage 1985

List of Attachments

- Attachment A Boring Logs
- Attachment B Photographic Log of Borings
- Attachment C KDHE Air Sampling Form LAC Building
- Attachment D Pace National Analytical Laboratory Reports

1.0 EXECUTIVE SUMMARY

SCS Engineers (SCS) has completed a Phase II Environmental Site Assessment (ESA) for the City of Leavenworth Former City Garage Operation, addressed as 2109 South 3rd Street, Leavenworth, Kansas (Property or Subject Site). A detailed description for the Property and adjoining properties of relevance to this assessment is provided in Section 2.2 of this document. The Subject Site development history is discussed in Section 2.2.2.

There have been numerous past environmental assessments completed at the Subject Site and adjoining properties from 1989 through 2019; these are summarized in Section 2.2.3. This Voluntary Cleanup Investigation Report presents both past and current field and analytical data and provides a comprehensive evaluation of the combined assessment activities.

PRELIMINARY SUMMARY

The current investigation performed by SCS included advancement of eleven direct-push technology borings. Groundwater samples were collected from each boring with soil samples collected from four of the borings. Temporary piezometers were installed at each boring to facilitate collection of groundwater samples and also used to collect fluid-level monitoring data. Additionally, two indoor and one ambient air samples were collected from the Leavenworth Animal Control Building. Field assessment activities were performed in general accordance with the SCS *Voluntary Cleanup Investigation Work Plan – Revised* (VCI Work Plan) dated August 28, 2020. The VCI Work Plan was approved by the VCPRP in correspondence dated September 4, 2020.

An abbreviated summary of findings and conclusions are provided below. However, details are not included or fully developed in this section, and the report must be read in its entirety for a comprehensive understanding of the items contained herein. Analytical tables are included as **Section 9.0** and Figures are provided in **Section 10.0**.

Assessment Status of Identified COCs

Subject Site – Petroleum Hydrocarbons: Previous and the current assessments have identified primarily diesel- and oil-range petroleum hydrocarbons in soil and groundwater at the Subject Site. As groundwater is present at a shallow depth, a laterally pervasive impact to vadose zone soils is not expected. Therefore, it is our conclusion that additional vadose zone assessment in areas extending from the former fueling areas is unwarranted.

Conversely, it is expected that additional assessment of petroleum hydrocarbons and associated fuel-range volatile organic compounds (VOCs) and semi volatile organic compounds (SVOCs) in the capillary fringe and groundwater exceeding respective Kansas Department of Health & Environment (KDHE) Non-residential Tier 2 RSKs is warranted to the east. As the highest dissolved-phase total petroleum hydrocarbon (TPH) mid-range hydrocarbons (MRH) and TPH high-range hydrocarbons (HRH) concentrations have been shown to be present at the former fueling areas and migrating through the groundwater migration pathway, it is our conclusion that sufficient evidence has been obtained to enroll the Property with the KDHE Storage Tank Section. It would be the intention of the City of Leavenworth (City) to recover future assessment and potential remediation costs through the state reimbursement program. It is recommended that any future assessment be performed following enrollment. It is our evaluation that installation of monitoring wells at and near the Subject

Site would be beneficial to provide information for dissolved-phase plume stability and natural attenuation.

Offsite Properties – Petroleum Hydrocarbons: Specific to the south adjoining properties, historical information and previous field assessment and analytical data supports a conclusion that the subsurface at the northeast portion of the Price Chopper property and beneath South 3rd Street has also been impacted by petroleum hydrocarbons. Because of proximity, it is not unreasonable to conclude that the former onsite fueling areas could have affected the subsurface immediately north of the supermarket building, particularly through groundwater migration of contaminants. However, the possibility that some, most, or all of the observed contamination in this area originated from approximately 70 years of salvage operations at Lakes Auto Salvage. This would be expected to include releases at the surface that have migrated through vadose zone soil, with the potential to have also impacted shallow groundwater in this area. Therefore, we consider this entity to be a potentially responsible party.

Subject Site - VOCs in Proximity of East Asphalt Storage Area: The current assessment identified chlorinated solvent compounds including cis-1.2 dichloroethylene (cis-1.2 DCE), cis-1.2 dichloroethylene (trans-1,2 DCE), trichloroethene (TCE) and tetrachloroethene (PCE) in soil in the area of the former asphalt storage area. The compounds were identified in the shallow sample (approximately 1.5 to 3.5 feet below ground surface [bgs]) collected from Boring PB-3; however, they were not reported in the deeper sample collected at a depth of approximately 9 to 11 feet bgs. The associated groundwater sample at this location also did not report these compounds above minimum laboratory limits. This soil impact was not identified by previous assessments. It is possible that the origin may have been from past VOC use at the former City sign shop; however, this area is located near the northern portion of Lakes Auto Salvage operations. It is likely these compounds were introduced at the surface due to their presence in shallow soil, and are now effectively "capped" onsite by the engineered fill placed during site grading and construction of the Leavenworth Animal Control (LAC) Building. It is important to understand that grading was completed through this portion of the Subject Site in all directions to the approximate south Property boundary. Conversely, they may be present in surface soil at the south adjoining Lakes Auto Salvage operations. Because of the limited extent in soil, absence of detectable groundwater concentrations and placement of the soil cap, we consider this issue effectively addressed for the Subject Site.

Subject Site – VOCs in Proximity of Former Sign Shop: VOCs were used at the former sign shop and paint and paint thinner waste was identified in surface soil during a KDHE compliance inspection in 1991. The location of the reported area was immediately north of the former building. Soil samples were collected to a maximum depth of approximately 24 inches in this area in late 1991 and analyzed for Toxicity Characteristic Leaching Potential (TCLP) Resource Conservation and Recovery Act (RCRA) metals, TCLP SVOCs and TCLP VOCs. The soil samples were also analyzed for VOCs, with ethylbenzene and toluene reported above minimum detection limits. Subsequently, approximately 60 tons of contaminated soil was excavated at disposed of offsite.

As this area is located beneath the LAC Building footprint, soil samples could not be collected by SCS. However, this area was assessed by collecting groundwater samples from Borings PB-3, PB-7 and PB-8 surrounding the former sign shop. A number of VOCs were reported in Borings PB-7 and PB-8; however, only benzene (PB-7 and PB-8) and naphthalene (PB-8) exceeded the Tier 2 Residential and Non-residential Groundwater Pathway RSKs. The groundwater sample collected from Boring PB-11 located in the northeast most part of the Subject Site also reported benzene, but below the Tier 2 Residential Groundwater Pathway RSK; no naphthalene, toluene or ethylbenzene was reported above minimum laboratory limits. Additionally, the aforementioned Boring PB-3 at the former east asphalt storage area reported only 1,4-dichlorobenzene and naphthalene (0.0028 mg/L)

in groundwater, slightly above the Tier 2 Residential and Non-residential Groundwater Pathway RSKs of 0.00111 and 0.00211 mg/L.

The occurrence of dissolved-phase benzene, naphthalene and other non-chlorinated solvent VOCs in this area may be related to the former sign shop or associated with the TPH-MRH and TPH-HRH impact. In either case, the identified VOCs have been assessed in groundwater to below the Tier 2 RSKs in all directions aside to the east and southeast. If additional assessment is considered appropriate specifically for these VOCs, it can be accomplished while conducting the additional assessment recommended above for petroleum hydrocarbons.

Subject Site – RCRA Metals at Former East Asphalt Storage Area: The only RCRA metal in soil samples collected as part of current and previous onsite assessments exceeding a Tier 2 Residential or Non-residential RSK was total lead at Boring PB-3 (4,770 mg/kg; approximately 9 to 11 feet bgs). However, elevated lead was not indicated in the sample collected immediately above this depth from approximately 1.5 to 3.5 feet bgs. The elevated concentration observed only at depth would not be expected unless it is associated with fill material placed during or after realignment of the Creek channel. No dissolved lead exceeding the minimum laboratory reporting limit was exhibited in the associated groundwater sample at this location. As no direct human exposure is expected in this area, we conclude additional onsite assessment is not warranted. It is noted that elevated metals were identified in the south portion of the Property during the Brownfields Targeted Assessment (BTA) conducted by the United States Environmental Protection Agency (USEPA) in 1999. However, based on our sampling results, the previous data is expected to have been for total lead, rather than dissolved lead in groundwater.

Subject Site – Dissolved RCRA Metals: Groundwater results from six sampling locations exhibited only three dissolved metal concentrations exceeding Tier 2 Non-residential and Residential RSKs across the Subject Site. They include arsenic (PB-5; 0.0486 mg/L), barium (PB-8; 5.19 mg/L) and lead (PB-10; 0.02161 mg/L); the remaining seven metals at all these locations were below the Tier 2 RSKs. The elevated lead present in the northwest portion of the Subject Site is likely associated with known lead contamination at the former GNB, Inc. facility identified in the 1999 BTA. The origin for the elevated dissolved arsenic and barium is not known; however, it is noted that both locations are near the former Creek channel filled by USACE in the late 1960's. As these limited occurrences are not laterally continuous, it is our conclusion that additional groundwater assessment is not necessary as human and ecological receptors are adequately protected. Also as discussed in the preceding paragraph, it is our conclusion that elevated metal concentrations identified at the Subject Site by USEPA in 1999 were analyzed as total, rather than dissolved metals.

South Adjoining Property – RCRA Metals: The 2019 Environmental Works, Incorporated (EWI) investigation at the south adjoining property identified elevated total lead in soil in the general vicinity of present day South 3rd Street. Elevated lead is present near the northeastern corner of the supermarket building, extending southward along the west side of the street. However, no dissolved-phase total lead concentrations were reported above minimum laboratory limits in groundwater samples from Borings SB-5 and SB-7. The analytical data supports a conclusion that lead impacts in this area are likely due to former Lakes Auto Salvage operations in this area, and not related to former City operations further to the north.

Subject Site and South Adjoining Properties – Other Regulated Compounds: Other regulated compounds identified by previous studies, including pesticides, 2,6-dinitrotoluene and polychlorinated biphenyls (PCBs) were not detected above minimum laboratory reporting limits in SCS soil or groundwater samples collected within the Subject Site boundary. Therefore, we conclude these compounds are adequately assessed onsite. Furthermore, it is our professional opinion these

compounds are more likely to have originated from the former Lakes Auto Salvage. Our research has identified that 2,6-dinitrotoluene is commonly used for explosives, including automotive air bags. It should be noted that the KDHE-BER Site Assessment Unit will conduct a separate field assessment for 2,6-dinitrotoluene in this area and south and east in proximity to Five Mile Creek. Per previous agreement, the resulting analytical data will be submitted to the City for review.

Recommendations

SCS recommends that the Kansas Voluntary Cleanup and Property Redevelopment Program (VCPRP) reevaluate what future regulatory oversight is necessary for this Property, as in our professional opinion, the identified contaminants of concern (COC) that requires additional groundwater assessment or potential remediation are petroleum hydrocarbons (and associated VOCs/SVOCs). We recommended that the City enroll and submit this Property for oversight and reimbursement costs through the KDHE Bureau of Environmental Remediation (BER) Storage Tank Reimbursement Program. We therefore, also ask the VCPRP to provide a specific determination whether non-fuel related substances identified at the Subject Site have been effectively addressed. Also in our professional opinion, additional assessment for the south adjoining properties, if required, should be led by Lakes Auto Salvage as the potentially responsible party.

LIMITATIONS

It should be understood our Phase II ESA findings and conclusions will not be scientific certainties, but rather opinions based on our professional judgment concerning the significance of the data reviewed or obtained during the course of the study. SCS does not and cannot represent that the Property contains no hazardous or toxic materials, products, or other latent conditions beyond that observed by SCS during the soil, groundwater and air sampling activities. Further, the services herein shall in no way be construed, designed, or intended to be relied upon as legal interpretation or advice.

2.0 INTRODUCTION

This Voluntary Cleanup Investigation Report (VCI Report) has been prepared on behalf of the City of Leavenworth, Kansas (City) for submission to the Kansas Department of Health and Environment (KDHE) – Voluntary Cleanup and Property Redevelopment Program (VCPRP) for real property herein identified as the City of Leavenworth Former City Garage Operation (Property or Subject Site). The Subject Site is listed in correspondence from the KDHE VCPRP (dated May 28, 2020) with an address of 2109 South 3rd Street, Leavenworth, Kansas 66048. The affiliated KDHE Project ID #C4-052-73682 was provided in earlier KDHE correspondence dated February 24, 2020.

A Subject Site Vicinity Map is shown in **Figure 1**. The Subject Site is generally located east of South 4th Street and north of Marion Street, with South 3rd Street entering the south-central portion of the Subject Site. The Subject Site boundaries as defined for the VCPRP are shown on **Figure 2**.

The Subject Site was enrolled in the VCPRP in response to KDHE – Bureau of Environmental Remediation (BER) correspondence dated February 24, 2020. This letter specifies the Subject Site as the City of Leavenworth Former City Garage/Old City Landfill. In this correspondence, KDHE summarizes environmental assessments completed as part of a property transaction due-diligence effort for land containing the commercial business located immediately to the south and southwest (Price Chopper Supermarket; 2107 South 4th Street). Work completed by another environmental consultant in 2019 identified petroleum hydrocarbons and metals in groundwater exceeding allowable state concentrations. Additionally, polychlorinated biphenyls (PCBs) were identified in soil below the 50 milligrams per kilograms (mg/kg) action level documented in the Toxic Substance Control Act (TSCA) guidance.

As required by the program, a site-specific Voluntary Cleanup Work Plan (VCI Work Plan) was prepared by SCS. This document, dated August 4, 2020, was submitted by the City to the program on that date. Review comments were subsequently issued by the VCPRP by correspondence dated August 24, 2020. The revised VCI Work Plan was dated August 28, 2020 and forwarded to the program for second review. The VCI Work Plan was approved (with comments) on September 4, 2020. The field investigation was scheduled and conducted by SCS from September 17 through 23, 2020. This VCI Report presents the results of these activities.

2.2 PROPERTY BACKGROUND

There is an extensive site development history and numerous environmental assessments have been completed at the Subject Site and adjoining properties. The detailed relevant information is provided in this section.

2.2.1 Property Location and Demographics

The Subject Site is located on land owned by the City since 1960 and presently includes the Leavenworth Animal Control (LAC) operations initiated in 2013 (**Figure 3**); the facility address is 2109 South 3rd Street. This facility includes one single-story building constructed as slab on grade supported by piers. Affiliated parking areas are located to the north (employees) and to the west-southwest. The north parking area was constructed with the building in 2013 and the south-southwest parking area existed previously. The balance of the Subject Site is presently undeveloped land.

The Subject Site is located in a commercial use area with immediately adjoining properties consisting of commercial businesses located to the south and west. Population density is less than the commercial district immediately adjoining South 4th Street/Kansas State Highway 7 and residential areas located further to the west and south-southeast. Immediately adjoining properties to the Subject Site are shown on **Figure 2** and include:

- North Land to the north and northeast is undeveloped and was part of the former Leavenworth Municipal Landfill (Landfill). The Landfill is described in greater detail in Section 2.2.2. The area immediately northwest of the Subject Site is owned by Tire Town and is presently used for tractor-trailer parking.
- West The immediately adjoining properties include Great Western Manufacturing Company (west and northwest) and parking area for the Price Chopper (west and southwest).
- South The Price Chopper building and northern vehicle access area is located immediately to the south. Lakes Auto Salvage is located immediately south of the southeast portion of the Subject Site. South 3rd Street, constructed in a north-south orientation, extends to the Subject Site from Marion Street located one block south. An additional portion of Lakes Auto Salvage is also present immediately south of Marion Street.
- **East** Five-Mile Creek (Creek) and the associated flood plain is located immediately east; land in this area is presently owned by the City. This area in part formerly included City Landfill operations. South 2nd Street is located further east of the Creek approximately 500 feet east of the eastern Subject Site boundary.

2.2.2 Property History

This summary of Subject Site history has been developed using numerous sources. The sources include discussions with former and current City Public Works personnel, environmental and geotechnical investigations conducted from 1989 through 2019, aerial photography and Google imagery, and City operational documents. Sources are referenced as applicable in the provided summary.

As mentioned earlier, the Subject Site and surrounding land has been owned by the City since 1960. Prior to establishing the former Landfill and former City Garage, the Subject Site as defined in this work plan and adjoining land to the north has historically been undeveloped as it included the Creek and the associated floodplain; this area was best described at the time as unusable for property development. The Creek has historically trended north-south and meandered throughout the Subject Site and the northern and southern adjoining properties. According to the McKinzie Construction, Inc. (McKinzie), *Brownfields Targeted Assessment Report* dated June 25, 1999, the Creek channel was redirected eastward to the present day location by the United States Corps of Engineers (USACE). This is described in the Brownfields Targeted Assessment (BTA) report as having occurred "Several years prior to operation of the landfill". It is our understanding that the former channel and floodplain were generally leveled at this time. The historic creek alignment can be seen in 1966 aerial photographs. Aerial photographs from 1972 and 1976 show the realigned Creek location present today.

Former City Landfill – 1969 through 1972

The former Landfill was operated from approximately 1969 through 1972. The extent of the former facility included land north of present day Thornton Street. Land between present day Marion Street (south) and Thornton Street was not extensively used for landfill operations. The former east landfill boundary was the redirected Creek channel that extending north to land currently containing the City Wastewater Treatment Plant. The western former landfill boundary appears to have extended toward South 4th Street, but did not cross the railroad tracks. The land area received waste material that was placed in pits approximately 12 feet in depth (McKinzie, 1999). The pits are reported to have extended into sandy subgrade materials and groundwater was reported to have been present at a depth of approximately 13 feet below ground surface (bgs). Overlying soil cover was reported to have been placed on top of the waste.

At some point following the cessation of operations at the Landfill, the City requested assistance from the United States Environmental Protection Agency (EPA) Region 7 Superfund Division to assess the environmental condition of the former Landfill property to facilitate eventual property redevelopment. EPA conducted the aforementioned BTA in late 1998 and early 1999. KDHE was listed as a stakeholder in the Federal Brownfields program and provided assistance with the BTA. The primary objectives of the investigation included:

- To assist the City in determining the nature and extent of potential contamination;
- To assess risks presented by contamination, and to
- Assess the Site in regard to American Society of Testing and Materials (ASTM) standards for environmental site assessments.

The BTA included performance of both a Phase I and II Environmental Site Assessment (ESA). The work was completed by McKinzie under contract with EPA. The Phase II ESA consisted of sediment, onsite and perimeter surface soil, subsurface soil and groundwater sampling across the former Landfill, including in part the former City Garage operations presently enrolled in the VCPRP. Specific operational areas of the Subject Site that were assessed at this time included:

- The Maintenance Building Area;
- Two asphalt aboveground storage tank (AST) areas (west and east), and
- One former diesel AST fueling area.

Generally, low-level concentrations of regulated substances were identified in some locations of the investigation area. The final report was issued by McKinzie on June 25, 1999. These assessments were evaluated by the EPA Superfund Division with subsequent correspondence issued to the City on August 13, 1999. Only one environmental condition was specifically mentioned in the EPA correspondence. It stated that "soil sampling analytical results suggest the property may have been impacted to a limited extent by lead waste." The McKinzie BTA report also noted that the lead impact was in a "perimeter surface sample" near west-adjoining properties that included GNB Inc. (presently Tire Town) and the Great Western Manufacturing Company. The BTA report identified that GNB Inc. is a State Hazardous Waste Site property.

The report also stated that "There were no records of large quantity of hazardous substances being disposed of at the former landfill, although unconfirmed reports of disposal of calcium hydroxide and unknown solvents were noted in an EPA report." The primary determination was that although the

Landfill had been previously recorded in the Comprehensive Environmental Response and Liability Information System (CERCLIS), "The EPA Superfund Program has determined that No Further Federal Action is appropriate at this property, unless new information warranting further Superfund consideration or conditions not previously known to the EPA regarding the property are discovered." The City was directed to contact the KDHE-BER for assistance with future redevelopment of the property.

Former City Garage Operations – 1972 through 1991

The Subject Site as defined for the VCPRP includes land containing former structures and garage maintenance facilities as shown on **Figure 3**. Operational dates reported by the City are to be from approximately 1972 through 1991. The facility was primarily decommissioned in 1992 with some structures remaining for an additional few years. Structures and past operations of environmental significance included:

• Maintenance Building – The building was constructed in 1972 and was used for vehicle repairs. It contained multiple service bays with a two story office/storage space located on the western end. A 300-gallon capacity waste oil AST was present in the northeastern portion of the building from approximately the late 1970s or early 1980's until decommissioning in 1992. The tank was used to store waste oil that fed an oil-burning heater for at least a portion of this time. The KDHE *Buried Tank Leak Assessment* dated November 11, 1992 was obtained from the Northeast District Office. The report specifies that the tank and lines were removed; a "Closed" status was assigned under KDHE Project Code U4-052-00868B.

Regulated materials expected to have been used, generated and/or stored at the Maintenance Building are expected to include volatile organic compounds (VOCs - degreasers), waste oil, and spent vehicle fluids and fuel-range petroleum hydrocarbons.

- Sign (Paint) Shop The Sign Shop was formerly located east of the Maintenance Building. It is reported by the City to have been primarily used as the base for painting operations and construction of signs. It is expected that substances containing VOCs were used; however, information specific to handling and potentially storing wastes are not available for review. It is known that a KDHE compliance inspection report from September 1991 indicated that paint/paint thinner waste had been introduced to surface soil north of the Sign Shop. This event is discussed in Section 2.2.3.
- Equipment Storage Shed This structure contained equipment and non-regulated materials used for Public Works operations. According to former and current City employees, it is not expected the shed would have been used to store wastes generated from the operations.
- Vehicle Fueling Areas There were formerly two generations of fuel storage tanks at the Subject Site that have been previously removed. Both were located in areas south of the Maintenance Building. The first fueling operation included either one or two 6,000-gallon capacity underground storage tanks (USTs) containing gasoline; dispensing is reported to have been at the UST locations. These were located south of the southwest corner of the maintenance building (Figure 3). Additionally, one 3,500-gallon capacity diesel AST was located further south and east of the gasoline USTs at this time. Due to the distance between the tanks, it is assumed that diesel fueling occurred at the AST. The

aforementioned tanks are reported by the City to have been installed in 1971. The gasoline USTs were removed in approximately 1980 or 1981; however, no removal report was on file with the KDHE Northeast District Office. The diesel AST is reported to have been removed in 1991 during decommissioning. Again, no removal report could be located for the AST by KDHE district personnel.

The second vehicle fueling area was located southeast of the first fueling area near the southern boundary of the Subject Site as presently defined. The KDHE *Tank Registration Renewal Form* dated April 1990 specifies that three 6,000-gallon capacity gasoline USTs were present in this area; they are noted to have been installed in 1981. The City has reported the USTs were removed in 1991 prior to facility decommissioning. SCS obtained a *Buried Tank Leak Assessment* report February 25, 1991 from the Northeast District Office. The report specifies that one 6,000-gallon capacity "fuel oil no 2 UST" was removed; a Closed status was assigned under KDHE Project Code U4-052-00868A. There is no mention of other USTs, piping or dispensers being removed, although the City has reported the other facilities were also removed at this time.

Also noteworthy, correspondence from the Northeast District Office to the City issued prior to UST removal (dated December 21, 1990) provides evidence that the USTs removed in 1991 qualified for the Petroleum Storage Tank Release Trust Fund. *Therefore, the City and SCS assumes that additional environmental assessment and/or remedial actions could be eligible for KDHE reimbursement.*

On June 29, 2020, SCS reviewed the online KDHE-BER Identified Sites List (ISL) Information for the City of Leavenworth Garage (Project Code C4-052-73682). Specific to former fuel storage tanks, the ISL specifies that one former 4,000-gallon capacity diesel UST was present at the Subject Site. Based on information from numerous sources, SCS expects this is referring to the 3,500-gallon capacity AST installed in 1971 and removed in 1991. It should be noted that both soil and groundwater samples were collected from this area as part of the 1999 BTA; no significant petroleum hydrocarbon impact was reported. The ISL also mentions a 500-gallon waste oil tank was present and removed before 2013. SCS assumes this refers to the 300-gallon capacity AST identified in the November 1992 *Buried Tank Leak Assessment* report. No other petroleum fuel tanks are identified in the ISL.

 Asphalt AST Areas – The former City Garage also maintained asphalt oil storage for roadway projects. There were two areas including the southeast portion of the Subject Site (Figure 3) and north of the northwest boundary established for this VCPRP enrollment. These facilities are referred to in the 1999 BTA as "AST Tank Farms". The KDHE ISL cites the BTA as having identified six 10,000-gallon capacity asphalt ASTs in 1999.

The Southeast Asphalt Storage Area included three 10,000-gallon capacity ASTs and a pump and heater house; loading occurred immediately to the west. These facilities were removed in 2013 to accommodate construction of the LAC Building. SCS reviewed select construction field reports issued by Williams, Spurgeon, Kuhl and Freshnock Architects, Inc. (WSKF Architects) for the Leavenworth Animal Control Project. A photograph included in Field Report 002 (dated June 24, 2013) shows soil excavation immediately north of the ASTs and pump/heater house. The excavation was completed per the new building plan specifications. A petroleum hydrocarbon impact was observed in this area during excavation and the affected soil was segregated and stockpiled. In Field Report

009 (August 21, 2013), it is stated that "contaminated dirt was dumped to the north of the Price Chopper lot." City Public Works personnel believe the petroleum-impacted soil was not reused onsite as it was subsequently disposed at the Gilman Road City Landfill located south of Lansing. However, offsite disposal records for this soil have not been located. No environmental sampling is discussed in the construction field reports.

The Northwest Tank Farm was located approximately 100 feet north of the north Subject Site boundary immediately east of the tractor-trailer storage area for Tire Town. This facility is no longer operable. Soil and groundwater samples were collected in this area during performance of the 1999 BTA; no significant detections of petroleum hydrocarbons were noted. Because of the BTA findings, additional assessment of the area was not performed by SCS.

No Active Property Use - 1992 Through 2013

The Subject Site was undeveloped and not used by the City following decommissioning of the Garage operations. It remained in this condition until construction of the LAC facility in 2013.

Current Site Use – City Animal Control Operations – 2013 to Present Day

The Subject Site currently contains LAC operations initiated in 2013. There is presently one singlestory building constructed as slab on grade supported by piers. Affiliated parking areas are located to the north and west-southwest. The north lot was constructed in 2013 and the south-southwest parking area was previously constructed by 2011. It is noteworthy that the LAC building was constructed with a 15-mil vapor barrier incorporated in the foundation design due to the location at a former landfill. Construction details prepared by CFS Engineers specify the vapor barrier was overlapped and sealed per manufacturer's specifications; sealing of penetrations was also noted on the plans.

2.2.2.1 Relevant History for Adjoining Properties

The following is a summary of the general development history of properties adjoining the Subject Site:

- North Land to the north and northeast has historically consisted of the Creek and associated flood plain. As described earlier, a portion of this area was formerly operated as the former City Landfill. The City Wastewater Treatment Plant is located on former Landfill property further to the north. Great Western Manufacturing and Tire Town are the commercial businesses located to the northwest; GNB, Inc. also formerly operated in this general area.
- West A portion of Great Western Manufacturing Company is also currently located west of the Subject Site. The Price Chopper parking area is located to the southwest; single family residential homes were initially located in this area. Smaller commercial businesses were also present to the southwest (fronting South 4th Street) prior to construction of the Price Chopper.
- **South** The area located immediately south of the Subject Site boundary was developed in 1990 as a **Price Chopper Supermarket**. The north side of the building is located approximately 60 feet south of the south boundary of the Subject Site. The area currently

comprising the approximate southwest quarter of the Subject Site has been historically used as the Price Chopper northern parking area (**Figure 3**). These commercial operations are observed today generally the same as since initial development. This land area was previously included the former Creek and associated flood plain. The former Landfill extended to the northern portion of the property for the years it was operational.

An auto salvage yard presently containing vehicles (**Lakes Auto Salvage**) is located immediately south of the southeast portion of the Subject Site. According to information obtained from City Directory review and recent City communication with the Lake Family, the commercial property has been present at this location since 1949. The Polk's City Directory lists the business as 235 Marion Street (south side of road) in 1954. The 1958 directory lists the business as both 235 and 236 Marion Street (north side of road). This information suggests that the family residence was located to the north with the business present on both sides of the roadway.

Additional historical information was researched to evaluate the history of operations for Lakes Auto Salvage. An aerial photograph from 1985 clearly shows that salvaged vehicle storage extended further west than presently observed. This includes the area where South 3rd Street and the east-most portion of the Price Chopper building are presently located. This is significant as it is an area of known contamination. South 3rd Street was formerly located further west than at present.

• **East** – The Creek and associated flood plain is located immediately east and southeast of the Subject Site. Aside from a portion used for former Landfill operations it has been undeveloped natural land.

2.2.3 Previous Investigations at and Near the Subject Site

Past environmental and geotechnical assessments have been performed at the Subject Site and adjoining properties by various parties for varying reasons. They are summarized below in chronological order. For each event summary, we provide professional opinions as to significance for the Subject Site and the current site assessment activities detailed in the previously approved VCI Work Plan.

Figures showing data collection locations and tables providing previous analytical data are referenced as applicable. It should be noted that the figures and tables include only data of significance to the current assessment completed by SCS. Unless otherwise noted, existing environmental and geotechnical assessment reports summarized below have been previously submitted to the VCPRP with the initial application.

• South Adjoining Property: Subsurface Exploration Report, Proposed Supermarket Site, Fourth & Marion Streets, Leavenworth, Kansas, Terracon Environmental, Inc. dated October 26, 1989. This report was prepared for Four-B Corporation. The geotechnical investigation was performed to provide recommendations concerning the design and construction of foundations and pavements for the Price Chopper building constructed in 1990. A total of 21 borings were advanced to depths ranging between approximately 8 and 42.8 feet below ground surface (bgs). Subsurface materials and bedrock were logged and geotechnical samples were collected. No environmental sampling and laboratory analysis was completed. Boring locations are considered to be non-critical information and are therefore not shown on VCI work plan figures. Significance – Subsurface materials are described as including native unconsolidated soil and bedrock, overlain by varying thickness of fill material. The native unconsolidated soil consist primarily of silty clay and clay, with subordinate lenses of silt and sand seams. Underlying bedrock is described as limestone. The overlying fill material is primarily described as clay and silty clay with construction debris included. The fill was noted as containing wood, cinders, brick, concrete and glass; gravel and trace gravel was also noted. The construction debris is expected to have originated from demolition of residential structures previously located in this area. The fill material was identified in over half the borings with thicknesses varying from approximately one foot to 16.5 feet bgs. Groundwater was identified during drilling as ranging between approximately 11.5 to 22 feet bgs.

These findings are consistent with the site history. This area includes the former location of the Creek channel prior to redirection by USACE. Presence of fill material is not unexpected as this area was included in City Municipal Landfill operations from 1969 through 1972.

 South Adjoining Property: Environmental Assessment – Phase II, Proposed Supermarket Site, Leavenworth, Kansas, Terracon Environmental, Inc. dated December 26, 1989. This report was also prepared for Four-B Corporation. The Phase II ESA was performed following completion of a Phase I ESA. Per the report transmittal letter, "The primary focus of this work was to assess the subsurface conditions to help determine whether potential off-site contaminant sources may have adversely affected the area of study." The scope of work included advancing nine borings for the collection of environmental samples (Figures 4A and 5A). Six of the boring locations were converted to groundwater monitoring wells (MW-1 through MW-6) for the collection of groundwater samples (Figure 5A). Soil samples were also collected from two of these wells (MW-3 and MW-4), as well as from three additional borings (B-1 through B-3) located along the east side of the relocated South 3rd Street (Figure 4A).

A primary finding of the assessment was that total petroleum hydrocarbons (TPH) were identified in soil in Boring B-1 and Monitoring Well MW-4 located near the southern Subject Site boundary (**Figures 4A-1** and **4B**). Additionally, a higher TPH concentration was exhibited above minimum laboratory reporting limits further south within South 3rd Street (MW-4; **Figure 4A-1**); this is adjacent to Lakes Auto Salvage. Total lead concentrations in soil were reported at 20 parts per million (ppm) from the three borings. Soil analytical results are included in **Tables 1A** and **1C**.

Analytical results for groundwater samples collected from the six monitoring wells did not exhibit regulated petroleum hydrocarbons exceeding minimum laboratory detection limits for benzene, toluene or xylenes (BTX) or for VOCs and SVOCs analyzed as a survey search. However, it should be noted that not all samples were analyzed for BTX or the VOCs/SVOCs survey search (**Tables 2A and 2B**). No TPH analysis was completed for any of the monitoring wells. Dissolved-phase arsenic, cadmium, chromium and lead concentrations were reported above minimum laboratory limits in only Monitoring Well MW-4 (**Table 2C**).

Significance – Soil sampling conducted along the south Subject Site boundary (north of the Price Chopper building) indicates the presence of generally low-level concentrations of petroleum hydrocarbons. However, groundwater sampling suggested it is not an extensive impact as no BTX or VOCs were reported above minimum laboratory reporting limits. It should be noted that the highest TPH concentration was present approximately 40 feet south of the Subject Site property boundary. This sample is located adjacent west of present day Lakes Auto Salvage. Metals reported in the groundwater sample from Monitoring Well *MW-4 exceed their respective current KDHE Tier 2 Risk-Based Standards (RSKs) for the Residential and Non-Residential Groundwater Pathway. However, it is not known if the results are for total or dissolved metals.*

Subject Site: Report of Testing - City Service Center, Kansas City Testing Laboratory (KCTL) dated December 18, 1991. A KDHE compliance inspection report from September 1991 indicated that paint/paint thinner waste had been disposed by employees to the surface soil located north of the Sign Shop. To evaluate this possibility, two soil samples were collected for the City by KCTL in the area shown on Figure 4A-1. The samples were obtained from six composite sampling locations at depths of approximately 6 inches bgs and approximately 18 to 24 inches bgs. Samples were analyzed for Toxicity Characteristic Leaching Potential (TCLP) for RCRA metals, SVOCs and VOCs. None of these TCLP analytical results exceeded the method detection limits. Additionally, the soil samples were also analyzed for VOCs. Results indicated three compounds exceeding minimum laboratory reporting limits in the 6inch composite sample including toluene (19,000 parts per billion [ppb]), ethylbenzene (12 ppb) and xylenes (28 ppb) as shown in **Table 1B** and **Figure 4A-1**. Although contamination was present, TCLP results indicated the material would not satisfy the definition of hazardous waste if excavated and disposed. The Phase I Environmental Site Assessment, Price Chopper Property prepared by Environmental Works (dated September 9, 2019; Page 4) specified that KDHE recommended the impacted soil be removed and properly disposed. Furthermore, approximately 60 cubic yards of contaminated soil was removed and disposed of at the former Leavenworth Landfill located on Gilman Road; no post-excavation confirmation sampling is documented and it is unknown if it was completed.

Significance – The analytical data identified VOCs present in surficial soil to a depth between surface grade and no deeper that above 18 inches bgs. Historical information indicated that soil in this area was excavated by the City. As shown on Figure 4A, the existing LAC Building overlies this sampling area. The VCI Work Plan included advancing borings surrounding the existing building for collection of groundwater samples.

 Subject Site and North Adjoining Property: Brownfields Targeted Assessment Report, The Leavenworth Landfill Site, Leavenworth, Kansas, United States Environmental Protection Agency/McKinzie Construction, Inc. dated June 25, 1999. The BTA was performed by an EPA contractor at the former Landfill property and included collection of surface soil, subsurface soil, groundwater, and sediment samples. The land area formerly operated as the former City Garage was included in the assessment. Samples collected at the Subject Site included four from surface/subsurface soil (Figure 4A) and two from groundwater (Figure 5A). Surface soil and subsurface soil samples did not exhibit detectable concentrations of TPH, VOCs or SVOCs exceeding minimum laboratory reporting limits (Tables 1A and 1B and Figure 4A-1); RCRA metals analytical results was reported as no significant detections for the parameters tested (Table 1C).

Groundwater samples were generally analyzed for the same parameters as soil samples. As shown on **Figure 5A-1**, benzene and methyl chloride were the only VOCs exceeding minimum laboratory reporting limits (Sample 100). The benzene concentration of 0.0069 mg/L slightly exceeds the Tier 2 RSK of 0.005 mg/L for both the Residential and Non-Residential Scenario Groundwater Pathway. Similarly, the methylene chloride concentration of 0.37 mg/L exceeds the Tier 2 RSK of 0.005 mg/L for both the Residential and Non-Residential Scenario Groundwater Pathway. Similarly, the methylene chloride concentration of 0.37 mg/L exceeds the Tier 2 RSK of 0.005 mg/L for both the Residential and Non-Residential Scenario Groundwater Pathway (Table 2A). For TPH, SVOC and pesticide analysis, detections were

limited to the pesticide compounds D,D,D-4,4' and pentachlorophenol (**Table 2B** and **Figure 5A-1**). A number of RCRA metals were exhibited exceeding minimum laboratory limits as shown in **Table 2C**. Metals exceeding Tier 2 RSKs for the Residential and Non-Residential Scenario Groundwater Pathway included arsenic, barium, cadmium, chromium and lead (**Table 2C** and **Figure 5A-2**). However, it was not noted in the BTA report whether these results were for total metals or dissolved metals. The EPA contractor did not recommend additional evaluation of metals in their summary report.

Significance – When viewed collectively, the absence of VOCs in soil and limited number in groundwater did not suggest there was a significant petroleum hydrocarbon or VOC impact in the central and southern portions of the Subject Site. Limited pesticide compounds were present in 1999 and warranted additional evaluation. The significance of RCRA metals exceeding Tier 2 RSKs is difficult to currently evaluate as the results may be for total metals. It should be noted that dissolved metal analytical results collected south and west of these data points in 2019 are significantly lower than the BTA results (Figure 5A-2 and Table 2C). The more recent results are discussed later in this section.

• Subject Site and East Adjoining Property: Preliminary Geotechnical Engineering Services Report for the Proposed Animal Control Facility, Marion Street, Just East of 4th Street, Leavenworth, Kansas, Professional Service Industries, Inc. March 21, 2012. This report was prepared for the City to assist in structural design for the LAC Building. A total of three borings were advanced to maximum drilling depths ranging between approximately 38.5 and 40.5 feet bgs. Subsurface materials and bedrock were logged and geotechnical samples were collected. No environmental sampling and laboratory analysis was completed. Boring locations are considered to be non-critical information and are therefore not shown on report figures.

Significance – Similar to that for the south adjoining property, subsurface materials consisted of native unconsolidated soil and bedrock, overlain by varying thickness of fill material. The native unconsolidated soil consist primarily of silty clay and clay, with subordinate lenses of silt and sand seams. Underlying bedrock is described as limestone. The overlying fill material is primarily described as clay with construction debris including rock, brick and asphalt; the material is present from demolition of residential homes previously located in the area. The fill material was encountered to approximately 6 feet bgs across the study area. Groundwater was identified during drilling as ranging between approximately 10 to 11 feet bgs.

In addition to those studies discussed above, a due-diligence environmental assessment was performed by Environmental Works, Inc. (EWI) in 2019 for the south adjoining property. Work was completed for Associated Wholesale Grocers (AWG) of Kansas City, Kansas. A Phase I ESA was completed in September 2019 and a follow-up Limited Phase II ESA was completed in November 2019. These reports were not submitted as part of the City VCPRP application as they had been previously submitted to KDHE by AWG. The Phase I ESA identified the Subject Site as a Recognized Environmental Condition, which warranted performance of the limited Phase II ESA. The data and key findings are discussed below.

• South Adjoining Property: Limited Phase II Environmental Site Assessment, Price Chopper Property, 2107 South 4th Street, Leavenworth, Kansas, Environmental Works, Inc. dated November 6, 2019. The limited Phase II ESA was performed exclusively at the Price Chopper property. Analytical data for soil and groundwater was primarily collected west and south of the western half of the Subject Site. Additionally, three soil gas samples were collected to evaluate subsurface vapor conditions in proximity to the Price Chopper Building; these are also located south of the Subject Site.

Soil sampling identified petroleum hydrocarbons (mid-range and high-range hydrocarbons) in soil near the south and southwest boundaries of the Subject Site (**Figure 4A-1**). None of these results exceeded Tier 2 RSKs for the TPH fractions (**Table 1A**). No BTX, ethylbenzene or other VOCs were reported exceeding minimum laboratory reporting limits (**Table 1B**). An area exhibiting elevated total lead concentrations is identified east of the Price Chopper building; however, the condition is not present further west of the building. Only one detectable PCB compound (Arochlor 1254) was identified and is located in the South 3rd Street area between the Price Chopper building and Lakes Auto Salvage (Boring SB-5; **Table 1D** and **Figure 4A-1**).

Groundwater sampling also identified petroleum hydrocarbons (mid-range hydrocarbons [MRH] and high-range hydrocarbons [HRH]) near the south and southwest boundaries of the Subject Site (Figure 5A-1). The highest TPH-MRH and TPH-HRH concentrations were noted south of the Subject Site along South 3rd Street and exceeded the Tier 2 RSK for TPH-MRH and TPH-HRH (Table 2B). However, aside from one generally low p-isopropyltoluene concentration from the sample collected from Monitoring Well MW-5 (0.0016 mg/L), no other VOCs exceeded minimum laboratory reporting limits (Table 2A). Additionally, the only detectable SVOC reported was 2,6-dinitrotoluene (0.0182 mg/L) from the sample collected from Monitoring Well MW-7 (Table 2B); the result exceeds the Tier 2 RSKs for the Residential and Non-Residential Scenario Groundwater Pathway (0.000557 and 0.00187 mg/L, respectively). The only RCRA dissolved metal concentrations above minimum laboratory reporting limits were arsenic and barium (Table 2C and Figure 5A-2). The arsenic concentrations in samples collected from Monitoring Wells MW-1 and MW-2 (0.015 mg/L) slightly exceeded the Tier 2 RSKs for the Residential Scenario Groundwater Pathway (0.01 mg/L). The barium concentrations were significantly below the Tier 2 RSK for the Residential Scenario Groundwater Pathway (2.0 mg/L).

Soil gas samples were collected north, northwest and northeast of the Price Chopper building. Analytical results indicated a number of common VOCs exceeding minimum laboratory reporting limits (**Table 3** and **Figure 6**). The concentrations were evaluated by EWI using the EPA Vapor Intrusion Screening Level (VISL) Calculator. No VOCs identified in the soil gas samples exceeded the EPA VISL Commercial Target Concentrations for Exterior Soil Gas. Only chloroform was identified above these threshold concentrations for Residential use.

Significance – Soil and groundwater sampling results have identified TPH-MRH and TPH-HRH in the area immediately north and east of the Price Chopper building. This area is immediately south of the Subject Site where two generations of fueling areas were formerly located. This area was also used for vehicle storage in the past by Lakes Auto Salvage, which is presently limited to the area east of South 3rd Street. Comparatively lower TPH-MRH and TPH-HRH concentrations are also present further west of the Subject Site below the main parking lot. There were other isolated detections of regulated substances in soil and groundwater located south of the Subject Site. This includes PCB soil detections in one boring located at the northeast corner of the Price Chopper building near both the Subject Site and the auto salvage yard. The two elevated total lead concentrations in soil were also present in this boring and further south along South 3rd Street. Also of note for groundwater, one 2,6dinitrotoluene concentration of 0.0182 mg/L was identified in the sample collected from the southern portion of South 3rd Street (in proximity to Marion Street). One common use of this compound is as an explosive for vehicle air bags.

The only RCRA metal in groundwater samples exceeding Tier 2 RSKs for the Residential and Non-Residential Scenario Groundwater Pathway was arsenic in the area west of the Subject Site. Conversely, sample results for areas nearer former garage operations that handled or stored regulated substances are below their applicable Tier 2 RSKs. These dissolved metal results are significantly lower than those reported in the BTA performed in 1999. This comparative evaluation provides some analytical evidence that earlier results were for total metals rather than dissolved metals.

Current Environmental Investigation

SCS environmental assessment field activities as presented in the approved VCI Work Plan were conducted from September 17 through 23, 2020. Investigative activities are summarized in the following section.

3.0 INVESTIGATIVE ACTIVITIES

Based on the findings of past assessments at and near the Subject Site, the potential regulated contaminants of concern (COC) were expected to potentially include total petroleum hydrocarbons, VOCs, SVOCs, RCRA metals, organochlorine pesticides, and PCBs. As discussed in Section 2.2.3 and shown in Figures and Tables, the previously identified COCs were found to be present in portions of the Subject Site, rather than pervasively present across its entirety. Therefore, the data needs varied by COC and was the basis of the Phase II ESA design presented in the VCI Work Plan. The types of data needed to achieve the VCI objectives included surface soil, subsurface soil, groundwater, and indoor air sampling.

3.1 VCI Assessment Objectives and Approach

The VCI Work Plan presented our detailed approach for surface/subsurface soil, groundwater, and indoor air sampling to be completed during planned Phase II ESA activities. It included the selected points of sampling and the intended numbers, volumes, and types of samples to be collected. The VCI Work Plan addressed these issues generically and in detail for the Subject Site.

The technical approach for developing the Phase II ESA design was to utilize data from previous investigations to identify COC data gaps so that a more thorough assessment of potential Subject Site source areas would be completed. Existing environmental data identified:

Subject Site

- Generally low-level concentrations of petroleum hydrocarbons and total lead in soil and limited VOCs and SVOCs in groundwater near the southern property boundary. None of the soil concentrations exceeded current Tier 2 RSKs for both Residential and Non-Residential uses. For groundwater, only benzene and methylene chloride in one location exceeded both the Residential and Nonresidential Tier 2 RSKs. Additionally, two SVOCs in groundwater were identified in this area, including pentachlorophenol and D,D,D-4,4'; the pentachlorophenol exceeded Residential and Non-Residential Tier 2 RSKs.
- *Toluene, ethylbenzene and xylenes were formerly identified in surface soil samples exceeding minimum laboratory reporting limits north of the former Sign Shop (Figure 4B).* The LAC building is currently present in this area. Soil was excavated by the City prior to the building being constructed. No previous groundwater data exists for this general area.
- *Other limited COC were reported by analytical laboratories in groundwater.* This includes D,D,D-4,4' (SVOC) north of the northeast corner of the former Maintenance Garage building. Elevated RCRA metals were also identified in this area and at the southern property boundary; however, it should be noted that it is not known if these results are for total or dissolved metals.

Adjoining Properties

Existing environmental data from properties immediately adjoining the Subject Site have identified:

• TPH-MRH, TPH-HRH and RCRA metals have been identified in soil at the Price Chopper supermarket (south and west adjoining property). The TPH concentrations do not exceed current RSK Manual Tier 2 RSKs for both Residential and Non-Residential uses. One total

lead result in soil (432 mg/kg) exceeds the Residential Tier 2 RSK, but is below the value for Non-Residential use. Remaining metals are considered to be within expected background concentrations. Additionally, PCBs were identified in soil at two depths in one boring located approximately 40 feet south of the Subject Site.

• Organic COCs in groundwater at the Price Chopper in proximity to the Subject Site include TPH-MRH, TPH-HRH, p-isopropyltoluene (VOC) and 2,6-dinitrotoluene (SVOC). Three of five analytical data points for TPH-MRH exceed Residential Tier 2 RSKs but not the Non-Residential use value. One TPH-HRH concentration exceeds both the Residential and Non-Residential Tier 2 RSKs (south of the Subject Site below South 3rd Street). The 2,6-dinitrotoluene identified further to the south exceeds both the Residential and Non-Residential Tier 2 RSKs. No Tier 2 RSK has been established for p-isopropyltoluene. A common industrial use for 2,6-dinitrotoluene is in explosives, and is not expected to have been used at the Subject Site.

Dissolved-phase arsenic and barium was also reported above minimum laboratory detection limits. The two arsenic concentrations of 0.015 mg/L exceeding minimum laboratory reporting limits slightly exceed the Residential/Non-Residential use Tier 2 RSK of 0.01 mg/L. Barium concentrations are all below the Residential/Non-Residential use Tier 2 RSK of 2 mg/L. It should be noted these concentrations are significantly lower than those reported in the 1999 BTA.

• Although a number of VOCs were exhibited in the three soil gas samples, no VOCs identified exceeded the EPA VISL Commercial Target Concentrations for Exterior Soil Gas. Only chloroform was identified above these threshold concentrations for Residential use.

Known Locations of Identified COC

When viewed collectively, COCs in soil and groundwater are generally present in the southern portion of the Subject Site and the north-most and northwest-most portions of the Price Chopper property. The offsite areas impacted by regulated substances include:

- The offsite area immediately west of the Subject Site is located approximately 250 feet from the former onsite gasoline UST facilities operated from approximately 1971 through 1980/1981. However, it is significant that no detectable gasoline-range (TPH-LRH) concentrations were identified during the previous assessments. Petroleum hydrocarbons exceeding minimum laboratory reporting limits have only included diesel- (MRH) and oilrange compounds (HRH).
- The area immediately north of the Price Chopper building is located in proximity to the former Subject Site gasoline fueling area (operated from 1981 to 1991) and the diesel fueling area (operated from 1971 to 1991). Again, detectable petroleum hydrocarbon concentrations identified to date have been TPH-MRH and TPH-HRH compounds.
- The highest offsite petroleum hydrocarbon concentrations have been previously identified east of the Price Chopper building near and within the present day South 3rd Street. This area was formerly used for salvage automobile storage prior to construction of the relocated roadway; auto salvage operations remain immediately to the east. It is noteworthy this area also exhibits the highest total lead concentrations in soil, as well as the PCBs in soil and 2,6-dinitrotoluene in groundwater.

Work Plan Approach – General Assessment Strategy

The planned assessment design included sampling soil in former operational garage areas considered to have a higher potential for a COC release(s) to the subsurface (**Figure 7**). Groundwater sampling was also conducted to further evaluate potential source areas and the lateral extent of COC(s) in groundwater. Additionally, air samples were collected from the LAC Building to evaluate the condition of indoor air quality for VOCs. The specific objectives for the field investigation included:

- Site-Wide Assessment: The overall objective was to obtain additional information to fill sitewide "data gaps" from previous investigations not specifically intended to assess the Subject Site and former operations as presently defined.
- Potential COC Source Areas: To assess the potential for petroleum hydrocarbons being present in soil and/or groundwater in the area of the two former onsite gasoline UST fueling areas not specifically assessed as part of the 1999 EPA BTA. We also assessed the former 3,500-gallon diesel fuel AST and the former east AST asphalt tank/heater building areas. Additionally, groundwater sampling was conducted north, east and west of the area surrounding the former Sign Shop where VOC-impacted soil was previously identified.
- Lateral Assessment of COCs in Groundwater: Additional groundwater samples were collected to enhance the current understanding of COCs at the Subject Site. The data set included sampling the source areas described above and four additional locations near the north and southwest property boundaries. As the data collected in 2019 at the Price Chopper property used currently required field procedures and analytical methods, no additional groundwater sampling was conducted at this adjoining property.

Specific to RCRA metals, dissolved metals analysis were performed for samples from six locations across the Subject Site. This data is compared to the existing 1989 Terracon, 1999 BTA and 2019 Price Chopper results to provide an effective site-wide assessment.

We also installed 1-inch diameter polyvinyl chloride (PVC) piezometers at each of the groundwater sampling locations. A top of casing elevation survey was completed and a groundwater gradient calculated.

• Evaluation of Indoor Air Quality: Two indoor air samples were collected to evaluate indoor air quality in the LAC building (Figure 8). Indoor sampling was selected rather than subsurface soil gas sampling as a 15-mil vapor barrier was installed during building construction. The results were compared to the Residential Indoor Air Tier 2 RSKs.

3.2 Field Activities

A total of eleven direct-push technology borings were advanced at the Subject Site (**Figure 7**). Groundwater samples were collected from each boring with soil samples collected from four of the borings. Temporary piezometers were installed at each boring to facilitate collection of groundwater samples and also used to collect fluid-level monitoring data. Additionally, two indoor and one ambient air samples were collected from the LAC Building. Field assessment activities were performed in general accordance with the SCS *Voluntary Cleanup Investigation Work Plan – Revised*

(VCI Work Plan) dated August 28, 2020. The VCI Work Plan was approved by the VCPRP in correspondence dated September 4, 2020.

3.2.1 Direct-Push Technology – Borehole Advancement

A total of eleven direct-push technology boreholes were advanced on September 17 and 18, 2020 using a Geoprobe® Model 54DT direct-push, track-mounted drilling unit. The borings were advanced at least five feet below the assumed static groundwater table or a maximum depth of 20 feet bgs. Boring logs are presented in **Attachment A**. A photographic log of field boring locations are included as **Attachment B**.

It should be noted that during the advancement of Boring PB-1 drilling refusal was met at 9 feet bgs on metallic debris (in part recovered in the Macrocore liner). The boring location was relocated approximately 8 feet to the south and advanced to a depth of approximately 20 feet bgs. This boring was designated as PB-1A.

3.2.2 Soil Sampling

Soil samples were collected from Borings PB-1A, PB-2, PB-3 and PB-9 by advancing a Macrocore soil sampling tool that is 4-feet long and 2.5-inches in diameter. The Macrocore contains a disposable acetate liner that collects a continuous soil core. Soil samples designated for laboratory analysis were collected directly from the acetate liner and transferred into laboratory-provided sample containers.

The Field Scientist collected one soil sample from the upper vadose zone for each of the borings for laboratory analysis, obtained at depths ranging from approximately 1 to 4 feet bgs. A second sample was collected for laboratory analysis from subsurface soil in each of the borings at depths ranging from approximately 9 to 14 feet bgs. Sampling depths are noted on individual borings logs.

During the drilling activities, each recovered soil core contained in the Macrocore liners was fieldscreened for VOCs using ambient temperature headspace analysis. This consisted of filling a plastic bag approximately half-full with a composite sample from the 4-foot long soil core and allowing sufficient time for organic vapors to volatize. The air contained in the headspace of the sample was then analyzed using a MiniRAE 2000 (Model PGM 7600) photoionization detector (PID) equipped with a 10.6eV lamp. PID measurements are recorded on the borings logs (**Attachment A**).

3.2.3 Piezometer Installation & Groundwater Sampling

The VCI Work Plan specified groundwater samples be collected from each boring with groundwater accumulation. Temporary 1-inch diameter PVC piezometers were installed in each borehole as a method to collect water samples. Each PVC casing was cut slightly below the ground surface and capped to mitigate the potential for trip-and-fall hazards. Additionally, the upper portion of the borehole was sealed with plastic and bentonite chips were placed on top of the plastic to mitigate the potential for surface water to flow into the borehole. Groundwater levels were measured throughout drilling activities to evaluate the rate of groundwater flow into the borehole/piezometers.

Fluid-level monitoring of static water levels was also completed immediately prior to collecting groundwater samples on September 21, 2020. The depth to groundwater varied in the piezometers from approximately 5.84 feet bgs (Boring PB-10, the boring advanced in the northwest corner of the Property) to 17.74 feet bgs (Boring PB-4, the boring advanced in the southwest corner of the Subject

Site). Groundwater samples were obtained from the piezometers using a peristaltic pump and disposable polyethylene (PE) tubing. Three borehole volumes from the boreholes/piezometers were purged before collecting the groundwater samples from each location. Groundwater accumulation did not immediately recharge at Boring PB-5 following purging and collection of containers for VOC/TPH-LRH analysis; additional sample volume for remaining parameters were collected the same day at a later time. All other groundwater samples were collected immediately following purging.

An elevation survey of the temporary piezometers was conducted by a State of Kansas Licensed Surveyor (Wilson & Company) on September 21, 2020. Elevations for the top-of-casings were obtained at each location; survey elevation data is provided on the boring logs.

3.2.4 Indoor Air Sampling

Two indoor air samples and one outside ambient sample were collected on September 21, 2020. The indoor air samples were collected from the employee cubicle area and storage hallway adjacent to the kitchen to provide representative data coverage as shown on **Figure 8**. The ambient air sample was collected upwind, immediately south of the LAC Building. A duplicate sample was collected with AS-1 located in employee cubicle area.

Both the indoor and ambient air samples were collected with 6-Liter SUMMA canisters equipped with a valve, vacuum gauge, particulate filter and flow regulator. The flow regulators were set by the laboratory to sample at a constant flow rate over an 8-hour sample interval. The canisters were individually certified and shipped with a brass cap over the sampling port, which was removed and replaced before and after the sampling period. A KDHE air sampling data sheet was completed for the air sampling event, and is included in **Attachment C**.

3.2.5 Quality Assurance/Quality Control Sampling

Quality Assurance and Quality Control (QA/QC) samples were collected during the assessment activities as described in the VCI Work Plan. This data is used to evaluate field and laboratory procedures. The total number of QA/QC samples collected included:

- Three trip blanks contained in the laboratory coolers with soil and groundwater samples designated for VOC analysis;
- One soil sample duplicate was collected from Boring PB-1A (9.5 to 11.5 feet bgs);
- One groundwater sample duplicate was collected from Boring PB-1A;
- One air sample duplicate, collected with Sample AS-1.
- One field blank collected during soil sampling activities;
- One equipment blank collected during soil sampling activities, and
- One field blank collected during groundwater sampling activities.

3.2.6 Analytical Testing

The soil and groundwater samples were transferred into laboratory-supplied containers and placed in a cooler with ice to maintain the temperature near 4 degrees Celsius (°C). The SUMMA air sampling canisters were shipped without temperature control during transportation. All samples were transported to Pace Analytical National Center for Testing & Innovation (Pace) in Mt. Juliet, Tennessee under standard chain-of-custody procedures.

Soil Samples were submitted for the following analysis:

- Full scan VOCs using EPA Method 8260B;
- TPH-LRH, TPH-MRH and TPH-HRH using EPA Modified Method 8015;
- RCRA Metals using EPA Methods 6010/7471, and
- Organochlorine pesticides using EPA Method 8141.

In addition to the above analysis, three soil samples (PB-1A - 9.5-11 feet bgs, PB-3 - 1.5-3.5 feet bgs and PB-9 - 9-11 feet bgs) were analyzed for SVOCs using EPA Method 8270C. The soil samples from Borings PB-2, PB-3 and PB-9 were also analyzed for PCBs using EPA Method 8082.

Groundwater samples were submitted and analyzed for:

- Full scan VOCs using EPA Method 8260B;
- TPH-LRH, TPH-MRH and TPH-HRH using EPA Modified Method 8015, and
- SVOCs using EPA Method 8270C.

In addition to the above analysis, groundwater samples from Borings PB-1, PB-3, PB-5, PB-6, PB-8 and PB-10 were analyzed for dissolved RCRA Metals using EPA Methods 6010/7471, and three samples from Borings PB-1A, PB-2 and PB-3 were analyzed for organochlorine pesticides using EPA Method 8081B.

Indoor Air and Ambient Samples were analyzed for VOCs using EPA Method TO-15.

The **QA/QC Samples** were analyzed for the same constituents as described above for the three media types.

A summary of soil analytical results are presented in **Tables 1A** through **1D**, and groundwater analytical results are presented in **Tables 2A** through **2C**. Soil vapor analytical results from the EWI soil gas investigation are presented in **Table 3** and indoor air sample results collected by SCS are shown in **Table 4**. The laboratory analytical reports are provided in **Attachment D**.

3.2.7 Investigation Derived Wastes

Soil waste generated during advancement of and sampling of borings was thin spread in a grassy area located at the southwest corner of the former equipment storage shed. Decontamination water generated during direct-push technology drilling was discharged directly to the soil surface and purge water generated during groundwater sampling activities also discharged directly to the soil surface in accordance with KDHE Policy SOP BER-08 (*Characterization and Disposal of Investigation-Derived Waste*), Section 5.0. Personal protective equipment and disposable sampling equipment were disposed of as municipal solid waste at the SCS office located in Overland Park, Kansas.

4.0 PHYSICAL PROPERTY CHARACTERISTICS

This section provides a summary of the current field assessment findings and analytical results. Previously collected environmental data is also discussed where applicable in this and subsequent sections.

4.1 Geology and Hydrogeology

The majority of the Subject Site is located within a portion of the historic Five Mile Creek Channel that was relocated by USACE in the late 1960's. This former channel is shown in **Figure 9**, and is observed as an "oxbow" geomorphic feature. It is assumed that this portion of the former channel was at least partially filled at this time, most likely with steam deposits reused from the general area. The figure also shows the location of the current LAC building and South 3rd Street. The present day creek channel is located immediately south of the southeast portion of the Subject Site generally appears as it did prior to the creek realignment. It should be noted that municipal solid waste was also placed in this area as is evidenced by earlier geotechnical and environmental studies and in soil cores obtained during this assessment.

Subsurface material encountered during the SCS field investigation primarily consisted of finegrained fill material previously placed in the former channel and surrounding area. Fill was present in all borings, although a considerably lesser thickness was observed at Borings PB-4 and PB-5, located along the western property boundary. The fill material primarily consisted of silty clay without and with municipal solid waste included (Borings Logs; **Attachment A**). Construction debris and general municipal trash was also present in the fill material. No asbestos containing material was observed in the recovered soil cores. The fill material was noted in all borings to the maximum drilling depth of approximately 20 feet bgs. Although not encountered during this assessment, previous geotechnical investigations at the Subject Site and south adjoining property have identified the upper surface of limestone bedrock at depths ranging between 37.8 and 42.5 feet bgs. Subsurface materials encountered during the SCS assessment are shown in Cross Sections A-A' and B-B', presented as **Figures 10-A** and **10-B**.

As mentioned above, Borings PB-5 and PB-4 were primarily advanced into unconsolidated native materials. However, fill material was identified from surface grade to approximately 3.5 to four feet bgs in these borings. The fill was underlain by native silty clay and clay to the maximum drilling depths of approximately 19.5 and 20 feet bgs. No bedrock was encountered in either borings. It appears that this area represents the west side of the former oxbow channel shown in **Figure 9**.

Groundwater was encountered in all SCS borings advanced. For borings located in areas of extensive fill, the approximate upper eight feet of the material was noted as damp and moist to a maximum depth of approximately 11 feet bgs; a significant increase in soil moisture content was noted below in the borings advanced into fill material. Groundwater immediately accumulated in these boreholes during drilling with saturated soil cores recovered. Conversely, the increase in moisture content in native unconsolidated soil at Borings PB-4 and PB-5 was observed at a depth ranging between approximately 11 and 12 feet bgs. These field observations indicate that groundwater is at a higher elevation and exhibits higher yield in the fill material as compared to the undisturbed native sediments.

Groundwater monitoring data was collected from the temporary piezometers on September 21, 2020, three to four days following installation. The depth to groundwater varied between 6.39 and 10.49 feet bgs in all borings except Borings PB-4 and PB-5. The depth of static groundwater in these

two borings was 17.74 and 17.35 feet bgs, respectively. This data supports an interpretation that groundwater characteristics differ between the fill material and native soil and has relevance to the fate and transport of COCs identified in groundwater, discussed further in Section 6.0. The potentiometric surface as measured exhibits a primary groundwater gradient directed to the east-southeast with an average approximate magnitude of 0.01 foot-per-foot (**Figure 11**). Groundwater measurements obtained from the two boring piezometers advanced into native silty clay and clay (PB-4 and PB-5) were noted as approximately five to nine feet lower elevation as compared to piezometers installed in the fill material. This supports the geologic and hydrogeologic field observations and conclusions discussed above.

4.2 Analytical Results

Analytical results of samples collected during this Phase II ESA are summarized on **Tables 1A** through **1D** (Soil), **Tables 2A** though **2C** (Groundwater) and **Tables 3** and **4** (soil gas and onsite indoor air), presented as Section 9.0. These tables also include analytical results from previous investigations.

Laboratory results are compared to the KDHE *Risk Based Standards for Kansas, RSK Manual – 5th Version* dated October 2010 (including subsequent updates). The initial screening process is a Tier 1 evaluation which is a comparison of a naturally occurring contaminant to the background concentration of that contaminant in the affected medium, using methods approved by KDHE-BER. Tier 2 is a comparison of the concentration of a contaminant to the risk-based cleanup values in the KDHE Tier 2 Risk-Based Summary Table (RSK Manual; Appendix A).

Analytical data is primarily presented and discussed in Section 5.0 – Nature and Extent of Contamination. A series of figures presenting the previous and current multi-medium analytical data are provided as Figures 12-A, 12-B, 13-A, 13-B and 14, provided as Section 10.0.

4.3 QA/QC Sampling Analytical Results

Field QA/QC sampling was conducted as described in Section 3.2.5. Analytical results are discussed below:

- Soil Field Blank: Selenium was detected in the soil field blank at a concentration of 0.0154 milligrams per liter (mg/l). No other RCRA-8 metals, TPH-LRH, TPH-MRH, TPH-HRH, VOCs, SVOCs, pesticides or PCBs were detected above laboratory reporting limits.
- **Groundwater Field Blank:** Naphthalene (8270C analysis) was detected at a concentration of 0.00122 mg/L. No other RCRA-8 metals, TPH-LRH, TPH-MRH, TPH-HRH, VOCs, SVOCs or pesticides were not detected above laboratory reporting limits.
- **Trip Blanks:** VOCs were not detected above laboratory reporting limits for the soil or groundwater trip blanks.
- Soil Duplicate Samples: The duplicate soil sample was collected from Boring PB-1A at the depth interval of approximately 9.5 to 11.5 feet bgs. Analytical results detected above laboratory reporting limits for the original and duplicate samples are provided on Tables 1A through 1D. Calculated Relative Percent Differences (RPDs) between the two data sets ranged from approximately 0.54 to 58.50 percent for evaluated parameters. RPDs greater than 20 percent were calculated for benzene, naphthalene, barium and lead in the sample

and duplicate. As analytical results are compared to Tier 2 RSKs, the highest concentration of the sample and duplicate are used for comparison. Both benzene and naphthalene sample and duplicate results were below the Tier 2 Residential and Non-residential RSKs; therefore, our interpretation is consistent. Specific to metals, it is not uncommon to have higher RPDs as a high degree of variability commonly occurs within a sampling core.

• Groundwater Duplicate Sample: A duplicate groundwater sample was collected from Boring PB-1A. Analytical results detected above laboratory reporting limits for the original and duplicate samples are provided on **Tables 2A through 2C.** Calculated RPDs between the two data sets ranged from approximately 0.77 to 42.23 percent for evaluated parameters. RPDs greater than 20 percent were calculated for TPH-HRH and naphthalene. Both the original and duplicate TPH-HRH concentrations were below Tier 2 Residential and Non-residential KDHE RSK levels. Conversely, naphthalene concentrations exceeded both RSKs. Therefore, our interpretation with RSKs is consistent, and the data is considered useable. The duplicate sample exhibited a Bis(2-ethylhexyl)-phthalate of 0.00697 mg/L while the original sample was reported below minimum laboratory reporting limits. The reportable concentration was used in data evaluation.

SCS reviewed the quality control reports provided by the laboratory. The following describes our data evaluation of the laboratory report qualifiers.

- A limited number of "J0" laboratory data qualifiers were identified for soil and groundwater sample results. This included the soil results for both surficial and subsurface samples collected from PB-1A (and duplicate), PB-2, PB-3 and PB-9 from laboratory batch L1264151 for acetone and 1,2,3-trichlorobenzene and all of the groundwater results from laboratory batch L1265359 for a detection of acrylonitrile and acrolein. The J0 qualifier indicates that while the identification of the analyte is acceptable, the reported concentration is an estimate. As these compounds are reported significantly below applicable Tier 2 RSKs, the data is considerable useable.
- The "J3" qualifier was present for the soil sample PB-1A 9.5 to 11 feet bgs and the soil field blank, equipment blank and trip blank in laboratory batch L1264151 for reported detections of anthracene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, chrysene, fluoranthene, phenanthrene, bis(2-ethylhexyl)phthalate, pyrene, chloromethane, 2-chlorotoluene, 4-chlorotoluene, 1,1-dichloroethane, cis-1,2-dichloroethane, trans-1,2-dichloroethane, cis-1,3-dichloropropene, methylene chloride, naphthalene, n-propylbenzene, 1,1,2,2-tetrachloroethane, 1,1,2-trichlorotrifluoroethane, 1,2,3-trichloropropane, 1,3,5-trimethylbenzene and vinyl chloride. The J3 qualifier indicates that the associated batch QC was outside the established quality control range for precision. Data was accepted as reliable at the reported concentrations and compared to Tier 2 RSKs.
- A limited number of "J4" laboratory data qualifiers were identified for soil and groundwater sample results. This included the soil results for the field blank, equipment bland and trip blank samples from laboratory batch L1264151 for vinyl chloride and the groundwater results for the field blank sample from laboratory batch L1265359 for benzidine data. The J4 qualifier indicates the associated batch QC was outside the established quality control range for accuracy. As these compounds were not reported above minimum laboratory reporting limits which are significantly below their applicable Tier 2 RSKs, the data is considered useable.

- The "J5" qualifier was present in laboratory batch L1264151 for a detection of acenaphthene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, chrysene, fluoranthene, fluorine, phenanthrene, Bis(2-ethylhexyl)phthalate and pyrene in the soil sample collected from Boring PB-1A at approximately 9.5 to 11 feet bgs. The J5 qualifier indicates that the sample matrix interfered with the ability to make any accurate determination because the spike value was high. This data was reviewed to Tier 2 RSKs, and as all compounds were significantly below these concentration, the data is considered useable.
- The "J6" qualifier was present in the soil results for sample PB-1A collected at approximately 9.5 to 11 feet bgs from laboratory batch L1264151 for a detection of hexachlorocyclopentadiene and 2,4-dinitrophenol. The J6 qualifier indicates that the sample matrix interfered with the ability to make any accurate determination because the spike value was low. This data was reviewed to Tier 2 RSKs, and as all compounds were significantly below these concentrations, the data is considered useable.
- The "J7" qualifier was present in the groundwater results for Boring PB-9 from laboratory batch L1265359 for surrogates 1-chloro-octadecane, 2-fluorophenol, phenol-d5, nitrobenzene-d5, 2-fluorobiphenyl, 2,4,6-tribromophenol, p-terphenyl-d14. The J7 qualifier indicates the surrogate recovery cannot be used for control limit evaluation due to dilution. The TPH-MRH and TPH-HRH are the highest exhibited in groundwater samples and exceed the Tier 2 RSKs. Only acenaphthalene, fluorene and phenanthrene were reported exceeding minimum laboratory detection limits, with the first two compounds below their Tier 2 RSKs. There is no Tier 2 RSK for phenanthrene. The data is considered acceptable for use.
- A limited number of "B" laboratory data qualifiers were present in the soil results for samples PB-1A 9.5 to 11 feet bgs (and duplicate), PB-3 9 to 11 feet bgs and PB-9 9 to 11 feet bgs from laboratory batch L1264151 for a detection of TPH-HRH and 1,4-dichlorobenzene and in the groundwater results for the field blank from laboratory batch L1265359 for naphthalene. The B qualifier indicates the analyte was found in the associated blank sample. Although these compounds are also in the blank samples, the results are considered useable as the results do not exceed their respective KDHE Tier 2 RSKs.
- The "P" qualifier was present in the groundwater results for the samples collected from Boring PB-3 and the groundwater duplicate from laboratory batch L1265359 for D,D,D-4,4'. The P qualifier indicates the RPD between the primary and confirmatory analysis exceeded 40%. However, the compound was not reported above minimum laboratory reporting limits.
- The "E" qualifier was present in air sample results for the air sample duplicate from laboratory batch L1265287 for a detection of ethanol. The E qualifier indicates the analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration. There is no Tier 2 RSK for ethanol and the result was considered useable.

During this data validation review, laboratory data qualifiers were noted as described herein. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods, it is common to find data qualifiers. These exceptions have been noted by this data validation review. Based on the evaluation completed on this data, sample results are determined to be valid and useable for their intended purposes.

5.0 NATURE AND EXTENT OF CONTAMINATION

COCs in Soil

Petroleum Hydrocarbons – SCS samples were collected from upper surface soil (grade to approximately four feet bgs) and from the lower vadose zone and capillary fringe as evidenced by field soil core examination (between approximately 9.5 to 14 feet bgs). It should be noted that static groundwater was encountered in piezometers ranging between approximately 5.84 and 17.74 feet bgs (**Table 5**), so the depth interval for a number of the lower-most samples was within the saturated zone as evidenced for the week of field activities.

As shown in **Table 1A**, the TPH fractions present in soil consists primarily of TPH-MRH and TPH-HRH. Only detectable HRH concentrations were exhibited at Boring PB-1/1A (former gasoline UST area) and both TPH-MRH and TPH-HRH were exhibited at Boring PB-9 located in the area of the former AST diesel fueling area (**Figure 12-A**). No detectable TPH concentrations were indicated from the samples collected at the other former gasoline UST area (Boring PB-2), located between Borings PB-1/1A and PB-9. Analytical results for the assessment completed by EWI near the former Subject Site fueling facilities at the south-adjoining property also exhibit TPH-MRH and TPH-HRH concentrations. No TPH-LRH concentrations exceeding minimum laboratory reporting limits were indicated in samples collected from both companies in 2019 and 2020.

SCS also collected soil samples in the loading area immediately north of the former east asphalt storage area removed during construction of the LAC building in 2013 (Boring PB-3; **Figure 12-A**). These samples exhibited both detectable TPH-MRH and TPH-HRH concentrations in both the upper and lower samples. The upper sample was collected from fill material at a depth ranging between approximately 1.5 to 3.5 feet bgs. Soil from the surface to the sampling interval consisted of newer fill material placed during construction of the LAC building. Construction reports from 2013 documented that soil at the surface was removed as part of overall grading for the building.

With respect to the nature and extent of contamination in onsite former fueling areas, it is important to note that only approximately eight to nine vertical feet of vadose zone soil is present, and it is expected that the former gasoline UST areas would have been excavated either near or into groundwater present in the fill material. Therefore, a significant impact in vadose zone soil would not necessarily be required to have also impacted groundwater. Conversely, petroleum hydrocarbons in the former AST area would have likely entered the subsurface from the surface and migrated downward. The lateral extent of TPH-MRH and TPH-HRH is also present at the south adjoining property as evidenced by environmental data obtained by EWI in 2019. The combined SCS and EWI analytical data indicates the occurrence of petroleum hydrocarbons in soil across this area, suggests a source area at the former onsite fueling areas. However, the identified offsite impact may have resulted from releases of petroleum hydrocarbons from Lakes Auto Salvage that had operations formerly present in the area of South 3rd Street and immediately north of the Price Chopper Building.

It is our interpretation that TPH-MRM and TPH-HRH present in vadose zone soil at the former AST storage area is likely not related to the fueling areas. The presence of petroleum hydrocarbons in the upper soil sample suggests a source area in this area, either due to former asphalt storage, impacts from Lakes Auto Salvage, or both. Petroleum hydrocarbons present in the lower soil sample is either related to a localized source area, or due to lateral migration of impacted groundwater.

VOCs – As shown in **Table 1B**, VOCs present in SCS soil samples exceeding minimum laboratory detection limits included benzene, toluene, ethylbenzene, xylenes and naphthalene. These compounds are commonly associated with fuel-range petroleum hydrocarbons and their presence in these areas are not unexpected where TPH-LRH and TPH-MRH is present. A limited number of other VOCs, including isopropylbenzene, n-propylbenzene, methyl tert-butyl ether (MtBE), 1,2,3-trimeythlbenzene, 1,2,4-trimeythlbenzene, chlorobenzene, 1,2-dichlorobenzene, and 1,4-dichlorobenzene were also present and not unexpected for petroleum hydrocarbon impacts. None of these results exceed their respective Tier 2 RSKs.

The shallow soil sample collected from Boring PB-3 in the area of the former asphalt storage area also exhibited generally low concentrations of chlorinated solvent compounds, including cis-1,2 dichloroethene (cis-1,2 DCE), trans-1,2 dichloroethene (trans-1,2 DCE), trichloroethene (TCE) and tetrachloroethene (PCE) as shown on **Figure 12-A**. None of these compounds exceeded their respective Tier 2 RSK concentrations. Also of note, the sample collected at a depth approximately 5.5 feet lower did not report detectable concentrations of any of the compounds.

SVOCs – SVOC analysis was completed for SCS samples expected to contain the highest TPH-MRH and TPH-HRH concentrations; sample selection was completed based on field screening and observations. The samples selected included PB-1/1A and duplicate (9.5 to 11 feet bgs), PB-3 (1.5 to 3.5 feet bgs) and PB-9 (9 to 11 feet bgs). As shown in **Table 1D**, there were a number of common SVOCs exceeding minimum laboratory detection limits. However, none of the detections exceeded their respective Tier 2 RSK concentrations. EWI also completed limited SVOC analysis at the south adjoining property; however, no results exceeded minimum laboratory reporting limits (**Table 1D**).

Results indicate the presence and distribution of SVOCs present in the lower samples are generally consistent with where TPH-MRH and TPH-HRH is also present. They are expected to be laterally persistent with the fuel impact and may be present at greater depths of the saturated zone. SVOCs present in the upper sample collected near the former eastern asphalt storage area is likely related to oil-range hydrocarbons formerly handled in this area, from vehicle storage operations at Lakes Auto Salvage, or both. The lateral extent of these compounds in vadose zone soil is not known; however, due to their physical characteristics these compounds do not typically extensively migrate laterally.

The SVOCs analysis also included reporting 2,6-dinitrotoleune as the EWI investigation in 2019 had identified this compound in groundwater at one location on the south adjoining property north of the intersection of South 3rd Street and Marion Street (**Figure 13-A**). This compound was not identified above minimum laboratory limits in any of the three SCS soil samples analyzed.

RCRA Metals – As shown in **Table 1C**, RCRA metals in SCS soil samples exceeding minimum laboratory detection limits included arsenic, barium, cadmium, chromium, lead and mercury. Aside from an elevated lead concentration in one sample (Boring PB-3 at approximately 9 to 11 feet bgs – 4,770 mg/kg), all results are below their respective Tier 2 RSKs (**Figure 12-B**). Even though the majority of samples were collected from fill material, the resulting concentrations appear to be generally within naturally-occurring concentrations. Similar results were exhibited in the sample collected by EWI at the south adjoining property. As with SCS, one elevated lead concentration was also indicated (Boring SB-5 from approximately four to five feet bgs – 432 mg/kg). The two elevated lead concentrations are present in the southwest portion of the Subject Site and below South 3rd Street. This includes the area within and immediately adjacent to where Lakes Auto Salvage has historically operated. The combined soil sampling results did not suggest the elevated lead occurrence is either laterally or vertically continuous.

Pesticides – Pesticides analysis was completed for all eight SCS soil samples as isolated pesticide occurrences (D,D,D-4,4' and pentachlorophenol) were noted in groundwater samples during completion of the EPA BTA in 1999. The location of the two occurrences included near the northwest corner of the LAC Building and near the former AST diesel storage area (**Figure 5A-1**). Although no soil detections were noted, SCS completed the soil analysis to augment that also completed for groundwater. No pesticides were identified above minimum laboratory limits in any of the soil samples.

PCBs – PCB analysis was completed for both upper and lower soil samples obtained from borings located along the southern Subject Site boundary as a PCB occurrence (Aroclor 1254) was identified in a soil sample collected by EWI in 2019. The location is at the northeast corner of the Price Chopper Building. No PCBs were identified above minimum laboratory limits in any of the SCS soil samples analyzed.

COCs in Groundwater

Petroleum Hydrocarbons – Petroleum hydrocarbons analysis, including TPH-LRH, TPH-MRH and TPH-HRH) was completed for all eleven groundwater samples collected by SCS (**Table 2B**). Only one sample (and duplicate) exceeded the minimum laboratory detection limit for TPH-LRH (Boring PB-1/1A). This boring is located in the area of the western-most former gasoline UST area (**Figure 13-A**). The results of 1.41 mg/L and 1.43 mg/L (duplicate) exceeded the Residential and Non-Residential Tier 2 RSKs of 0.35 and 0.95 mg/L, respectively. However, TPH-LRH is not laterally extensive as the surrounding SCS sample locations in the southwest and west-central portions of the Subject Site do not exhibit detectable concentrations. Additionally, groundwater samples collected from the northern portion of the south adjoining property did not exhibit TPH-LRH above minimum laboratory reporting limits (**Table 2B** and **Figure 13-A**).

As shown in **Table 2B and Figure 13-A**, the TPH fractions present in groundwater consists primarily of TPH-MRH and TPH-HRH; this was also noted in soil samples collected from the former onsite fueling areas. Nine of eleven groundwater samples exhibited detectable TPH-MRH concentrations, of which eight exceeded either the Residential or Non-Residential Tier 2 RSK. The highest concentrations were at Borings PB-7 and PB-9. Similarly, TPH-HRH fractions were detected in eight of the samples; however, only two locations exceeded the Residential Tier 2 RSK (Borings PB-7 and PB-9), with Boring PB-9 also exceeding the Non-residential Tier 2 RSK.

Figure 14 presents TPH-MRH and TPH-HRH concentrations at the Subject Site and south adjoining Price Chopper property. The figure is also an isoconcentration map for TPH-MRH. The maximum TPH-MRH concentration is noted at Boring PB-9, the former location of a diesel AST fueling area. Surrounding sampling points show the approximate lateral extent of this petroleum hydrocarbon fraction. Two of the TPH-MRH isoconcentration lines represent the Tier 2 Residential and Nonresidential RSK values; these are 0.15 and 0.4 mg/L, respectively. The approximate south-central and eastern portion of the Subject Site exhibits TPH-MRH exceeding the Tier 2 Non-residential RSK. The majority of the Subject Site has TPH-MRH concentrations exceeding the Tier 2 Residential RSK, with the plume likely extending easterly toward the present Five Mile Creek Channel.

VOCs – As shown in **Table 2A**, there were a number of VOCs present in SCS groundwater samples exceeding minimum laboratory detection limits. These are primarily associated with refined petroleum hydrocarbons and degradation products. Although detected in the shallow soil sample at Boring PB-3, no chlorinated solvents (PCE, TCE, cis-1,2 DCE or trans-1,2 DCE) were exhibited in any of the samples.

The VOCs that exceeded Tier 2 Residential and Non-residential RSKs at the Subject Site included benzene and naphthalene (**Table 2A**). The maximum benzene and naphthalene concentrations were noted at the west-most former gasoline UST area; lesser concentrations are present in groundwater to the central and east-central areas (**Figure 13-A**). No benzene or naphthalene concentrations exceeding minimum laboratory detection limits in groundwater samples collected by EWI at the adjoining Price Chopper property. Additionally, methylene chloride exceeding the Tier 2 RSKs was identified by EPA in 1999 near Boring PB-9. However, this compound was not identified by SCS in that area.

SVOCs – SVOC analysis was completed for all eleven groundwater samples collected by SCS (**Table 2B**). The primary compound encountered exceeding laboratory reporting limits was naphthalene, present in four boring locations across the central, southern and southeast portions of the Subject Site; the detections appear to be associated with TPH-MRH concentrations (**Figure 13-A**). All detections are noted as exceeding both the Residential and Non-residential Tier 2 RSK values. Groundwater samples collected by EWI at the south adjoining property were not analyzed for SVOCs. It is expected that naphthalene could also be present in the northern portion of the Price Chopper property where TPH-MRH has been identified.

There were a limited number of other detectable SVOCs, including acenaphthene, fluorene, phenanthrene at Boring PB-9. However, none exceeded their respective Tier 2 RSKs. There were also two bis(2-ethylhexyl)-phthalate concentrations exceeding minimum laboratory reporting limits. This included Borings PB-1/1A (0.00697 mg/L) and PB-11 (0.00607 mg/L). The detections slightly exceed the Residential/Non-Residential Tier 2 RSK of 0.006 mg/L and the compound is not present laterally across the Subject Site.

RCRA Metals – Dissolved RCRA metals analysis was completed for six groundwater samples collected by SCS to provide representative data across the Subject Site (**Table 2C**). Metals analysis was completed as part of previous investigations at the Subject Site and south adjoining property, including Terracon in 1989, EPA in 1999 and EWI in 2019. Results from the 1989 and 1999 assessments identified metal concentrations exceeding the current Residential/Non-residential Tier 2 RSKs for arsenic, barium, cadmium, chromium and lead (**Table 2C**) However, summary reports did not identify if these results reported total metal or dissolved metal concentrations.

Additional metal analysis (dissolved) was completed by EWI in 2019 at the Price Chopper property. This assessment identified arsenic and barium exceeding the laboratory reporting limits, with the arsenic concentration of 0.015 mg/L for both samples slightly exceeding the Residential/Non-residential Tier 2 RSK of 0.01 mg/L (**Figure 13-B**). Our dissolved metal results have identified arsenic, barium and lead exceeding laboratory reporting limits (**Table 2C**). Only three occurrences exceeded their respective Tier 2 RSK values, including Borings PB-5 (arsenic; 0.0486 mg/L), Boring PB-8 (barium; 5.19 mg/L) and Boring PB-10 (lead; 0.0261 mg/L) as shown on **Figure 13-B**. None of these exceedances are observed as laterally continuous.

Pesticides – Pesticides analysis was completed for three groundwater samples collected by SCS along the southern portion of the Subject Site (**Table 2B**). The sampling locations were selected due to D,D,D-4,4' and pentachlorophenol present in the groundwater sample near the former AST diesel storage area (**Figure 13-A**). Neither of these, or other pesticide compounds, were identified above minimum laboratory limits in the SCS groundwater samples.

Air Sampling – LAC Building

VOCs – As discussed in Section 3.2.4, two air samples (and duplicate) were collected from inside of the LAC Building at the staff cubicle area and storage hallway adjacent to the kitchen. An ambient air sample was also collected outside of the LAC Building. The samples were submitted for VOC analysis; results are shown in **Table 4**. Analytical results exhibited a limited number of compounds exceeding minimum laboratory reporting limits, none of which exceeded their respective Tier 2 RSKs for the Residential Indoor Air Pathway. Based on COC present in the subsurface, compounds of particular interest included benzene, naphthalene and chlorinated solvents. Benzene and naphthalene were not reported above laboratory method limits. PCE was the only chlorinated solvent present in indoor air; the maximum result of 5.11 ug/m3. This concentration is approximately eight times lower than the Tier 2 RSK.

Indoor air conditions were previously evaluated for the Price Chopper Supermarket building by EWI in 2019. Three soil gas samples were collected along the north side of the building, near the southern portion of the Subject Site (**Figure 6**). The resulting data was evaluated using the EPA VISL Calculator. Although analytical results indicated a number of common VOCs exceeding minimum laboratory reporting limits (**Table 3**), none exceeded EPA VISL Commercial Target Concentrations for Exterior Soil Gas. Only chloroform was identified above these threshold concentrations for Residential use.

6.0 CONTAMINANT FATE AND TRANSPORT

Field observations and analytical results indicate that petroleum hydrocarbons and related VOCs and SVOCs are the primary regulated substances present in soil and groundwater. The potential source areas for this observed contamination includes UST and AST fueling facilities formerly operated by the City and in the area of the former Lakes Auto Salvage. Other lesser and limited occurrences of regulated substances are also present, including RCRA metals, pesticide compounds, PCBs and 2,6,-Dinitrotoluene, an SVOC not specifically related to fuel releases. The presence and expected fate and transport of contamination is summarized in this section.

6.1 Potential Migration Routes

Petroleum Hydrocarbons & Related VOCs/SVOCs: City garage operational data and historical sources of information for Lakes Auto Salvage indicate that the majority of currently identified impact(s) to soil and groundwater occurred a considerable time in the past.

City research and historical sources of information indicate that Lakes Auto Salvage has operated from at least 1949. Aerial photographs and City Directory information shows that this business has historically formerly operated on both the north and south sides of Marion Street. Additionally, salvaged vehicles were present in the area of the current South 3rd Street and the eastern-most portion of the Price Chopper property as shown in **Figure 15**. Common COC for salvage operations include fuel- and oil-range hydrocarbons, SVOCs, VOCs and metals. The substances typically enter the subsurface at the ground surface and migrate downward in the soil column through natural leaching mechanisms. Groundwater can also be impacted if significant contaminant mass exists with a sufficient amount of time.

Onsite areas where petroleum hydrocarbon impacts to shallow soil have likely occurred include the east asphalt storage area and in the area of the former AST fueling area. In both these areas if spills had occurred, it is typically during filling fuel or loading asphalt in areas without surface asphalt or concrete surface. Additionally, potential fuel releases from underground piping and USTs could have occurred. In this case, it is important to note that vadose zone soil is limited from grade to above the shallow water table (measured as high during this assessment as approximately 6.5 feet bgs). Potential releases from piping would migrate through the soil to groundwater. Conversely, potential releases from the USTs would be expected to directly impact groundwater and associated capillary fringe directly as the tank basin would have likely been excavated to at least that depth. Once in the subsurface, contaminants from the fueling facilities would mostly migrate laterally through the groundwater pathway.

As the Subject Site AST and USTs were operable between 1972 and 1991, petroleum hydrocarbons present in the subsurface represent an older release(s). Although site records indicate that both diesel and gasoline fuel was dispensed, analytical data exhibits primarily an MRH fraction in soil and groundwater. This data supports a conclusion that shorter-chain hydrocarbons have likely degraded over the last thirty to fifty years. This may also explain in part the presence of HRH compounds. Additionally, it is also reasonable to assume that petroleum hydrocarbons (fuel and oil range) were primarily introduced directly to the ground surface in the area of the former Lakes Auto Salvage.

Other Regulated Compounds: The remaining regulated substances previously and currently identified in subsurface soil are minor occurrences of PCBs (Aroclor 1254), chlorinated solvents (1,2-DCE, TCE and PCE) and RCRA metals including lead exceeding the Tier 2 RSK. In groundwater, these regulated substances include a pesticide (D,D,D-4,4'), an SVOC commonly associated with

explosives manufacturing and use (2,6-Dinitrotoluene) and RCRA metals. The metals in SCS groundwater samples exceeding Tier 2 RSKs include arsenic, barium and lead.

It is common for pesticides to be applied at the surface, with downward migration into subsurface soil, and potentially groundwater, leaching with precipitation. Areas exhibiting elevated metal concentrations in soil also leach downward. It is important to note that these detections are limited in quantity and lateral and vertical extent in soil, and in the case of metals exceeding Tier 2 RSKs, are identified at isolated sampling points rather than being laterally continuous.

6.2 Contaminant Characteristics

The primary regulated substance identified at the Subject Site are petroleum hydrocarbons; the predominant fraction is identified as TPH-MRH with comparatively lesser concentrations of TPH-HRH. Only one detection of TPH-LRH was identified in a groundwater samples. A limited number of VOCs are assumed to be associated with the TPH-MRH including BTX and naphthalene. Migration of TPH-MRH in the vadose soil and groundwater is generally less extensive than expected for TPH-LRH as it consists of comparatively longer chain hydrocarbons. The TPH-HRH fraction includes hydrocarbon molecules commonly described as "oil". This fraction does not readily migrate through vadose zone soil or groundwater, and therefore are typically present at and in proximity to a source area. SVOC compounds are generally present when TPH-HRH and TPH-MRH occurrences are identified.

With TPH-MRH, the BTX and naphthalene are shorter chain hydrocarbon compounds and are expected to migrate the greatest distance from a source area through the groundwater pathway. The TPH and VOCs partition to the vapor phase and are therefore considered when evaluating the potential for vapor encroachment conditions in structures/buildings. Benzene and naphthalene are compounds of specific interest for indoor air. Conversely, SVOCs (excluding naphthalene) generally do not typically pose a high risk for migration into overlying structures because of their physical characteristics.

Chlorinated solvents, including cis-1,2 DCE, trans-1,2 DCE, TCE and PCE have been identified in one soil sample collected near the former east asphalt storage area; these VOCs were not exhibited in groundwater samples collected at the Subject Site. As it is for BTX and naphthalene, these VOCs can readily migrate as vapor from the subsurface into buildings. All four are priority compounds when evaluating indoor air quality. They also readily migrate through soil and groundwater pathway. Exposure via direct contact in soil and groundwater includes inhalation, dermal contact and ingestion.

The RCRA metals naturally occur in soil. However, there are numerous potential adverse health effects when human receptors are exposed to elevated concentrations in soil or groundwater. Metals generally migrate downward in upper vadose soil through leaching from precipitation. Dissolved metals also migrate laterally through the saturated zone with groundwater flow. The primary route of exposure is through direct contact including inhalation, dermal contact and ingestion. As metals do not volatilize, they are not considered when evaluating for vapor encroachment conditions.

6.3 Contaminant Migration

As described above, the primary contamination at the Subject Site are petroleum hydrocarbons and associated fuel-range VOCs (BTX and naphthalene) and SVOCs. Assumed releases to the surface are expected to include Lakes Auto Salvage, in the area of the former AST fueling area and in the area of

the former east asphalt storage area. If a spill occurred at the surface in these areas, there would be downward contaminant migration potentially to the capillary fringe and shallow groundwater. In the case of a UST fueling system release, contaminants can be released directly to subsurface soil (ground spills or subgrade piping) or directly to groundwater from USTs and other basin releases.

For this property, we conclude the majority of petroleum hydrocarbon mass is present in the capillary fringe and saturated zone and dissolved in groundwater. Concentrations of and the estimated lateral extent of petroleum hydrocarbons in groundwater are shown in **Figure 14**. The assumed extent of contamination encompasses former Subject Site fueling areas and east asphalt storage area, as well as the location of historic operations of Lakes Auto Salvage at the south Property boundary, beneath current day South 3rd Street and eastern-most portion of the Price Chopper property.

The dissolved phase petroleum hydrocarbon plume extends generally eastward toward the current Five Mile Creek channel located immediately east of the Subject Site and former auto salvage. When evaluating migration of contaminants in groundwater, there are site-specific factors to consider. Firstly, the Property is located within the stream and fluvial deposits system of Five Mile Creek. This subsurface area has been reworked and altered by both USACE during realignment of the system channel in the late 1960's and with placement of mixed soil, construction debris and municipal wastes between 1969 through 1972. Soil cores recovered during previous geotechnical and environmental assessments, as well as the current assessment have described this area as having lower degree of density and higher degree of saturation when compared to immediately surrounding areas. This "fill area" also exhibits a higher static groundwater level as compared to the land area to the west portion of the Subject Site. These relationships are apparent when comparing subsurface data near the west boundary of the Subject Site. All SCS borings are located within the "fill area" with the exception of PB-4 and PB-5, which exhibit fill material to only approximately four feet bgs, as compared to borings located immediately east (PB-1, PB-2 and PB-6) which encountered fill to the maximum drilling depth. Static groundwater was measured in the natural deposits at Borings PB-4 and PB-5 more than ten feet lower than in the fill material present in the east. The fill area can be visualized as a "bathtub" that retains surface water and having physical characteristics that encourages a higher flow regime and lateral migration potential as compared to the area with mostly natural deposits and limited fill material. The effect can also be seen in contaminant distribution. As shown on Figure 14, there are no detections of TPH-LRH, MRH or HRH at Borings PB-4 and PB-5. Further to the west, EWI Borings MW-1 and MW-2 exhibit lower comparative petroleum hydrocarbon concentrations also, with fill material only present in the upper three feet below ground surface.

The groundwater gradient direction was calculated for September 21, 2020 as being primarily directed toward the east-southeast (**Figure 11**), while dissolved-phase petroleum hydrocarbons are shown across the majority of the Subject Site (**Figure 14**). Furthermore, the highest concentrations appear to be migrating from the apparent source areas to the east-northeast. This can be better understood when considering the location of the former oxbow portion of the stream channel. **Figure 9** shows the location of the Five Mile Creek channel in 1966 prior to USACE realignment. It is our opinion that this portion of the former backfilled channel has an effect on the overall flow dynamics below the Subject Site and likely influences contaminant migration. Interestingly, other isolated occurrences of contaminants in groundwater exceeding Tier 2 RSKs are present within or near the former oxbow channel (**Figure 13-A**). These include pentachlorophenol (BTA Boring 100) and Bis (2-ethylhexyl)phthalate in Borings PB-1A and PB-11. Similarly, isolated occurrences of dissolved metals exceeding Tier 2 RSKs are also present, including arsenic in Boring PB-5, lead in Boring PB-10 and barium in Boring PB-8 (**Figure 13-B**).

7.0 IDENTIFICATION OF POTENTIAL RECEPTORS AND LAND USE

A pre-field assessment receptor evaluation was included in the VCI Work Plan as Section 2.5. This section presents an update of potential receptors following completion of the field data acquisition activities. All current and future receptors in the vicinity of the Subject Site are discussed immediately below in Section 7.1; those identified as having a potential for being impacted by contamination are identified in Section 7.2. Land use information follows in Section 7.3.

7.1 Receptors

Current Potential Human Receptors

<u>ONSITE</u>

• Onsite Commercial Workers – LAC Building: The potential for vapor encroachment was evaluated by collecting indoor air samples and an ambient outdoor sample during the SCS field assessment. The air samples were analyzed for VOCs and compared to Tier 2 RSKs for Residential Indoor Air. A number of VOCs were reported above minimum laboratory reporting limits; however, the individual compound results were significantly below the applicable RSKs. *Based on this representative sampling event, an adverse vapor encroachment condition is not expected.*

Direct exposure to surface soil is limited to grassy areas at the LAC property (dermal contact, ingestion and inhalation). *The current and previous assessments have not identified COCs exceeding Tier 2 Non-Residential RSKs in surface soil/vadose zone across the Subject Site. Therefore, a potential adverse exposure is not expected.*

As there are no public or private water wells onsite, it is our evaluation that onsite commercial workers are not currently exposed to contaminated groundwater at the Subject Site. Water is provided by the City of Leavenworth.

- Onsite Construction Workers *Workers could be potentially exposed to contaminants in soil and groundwater through dermal contact, ingestion and inhalation if construction work is planned.* The potential exposure is further discussed in Section 7.2
- Onsite Residents There are currently no residents at the Subject Site. A search for
 residential properties in proximity to the Subject Site was provided in Section 2.5 of the VCI
 Work Plan. The nearest current residence (2113 South 2nd Street) was identified as located
 approximately 450 east of the Subject Site. This residence is located east of Five Mile Creek,
 which is located between the two properties.

<u>OFFSITE</u>

• Offsite Commercial Workers – Price Chopper Property: Exposure to VOCs through the indoor Inhalation pathway was evaluated. However, an adverse exposure is considered unlikely as subsurface soil gas data collected by EWI in 2019 did not exhibit results exceeding EPA VISL Calculator threshold concentrations, which predicts indoor air quality.

Direct exposure to surface soil is limited to grassy areas located along the south and west property boundaries (dermal contact, ingestion and inhalation). *The previous assessments*

have not identified COCs exceeding Tier 2 Non-residential RSKs in surface soil/upper portion of the vadose zone across the portions of this offsite property where COCs have been identified. Therefore, a potential adverse exposure is not expected.

As there are no public or private water wells being used, it is our evaluation that offsite commercial workers are not currently exposed to contaminated groundwater present in the north or east portions at the property. Water is provided by the City of Leavenworth.

- Offsite Construction Workers *Workers could be potentially exposed to contaminants in soil and groundwater through dermal contact, ingestion and inhalation if construction work is planned in the near future.* The potential exposure is discussed in Section 7.2
- Offsite Residents *There are currently no potential residential receptors at immediately adjoining properties.*
- Offsite Commercial Workers Properties Located to West and Northwest: Commercial properties are also located west and northwest of the Subject Site. *As contaminated soil and groundwater exceeding Residential RSKs are not expected in these areas, adverse exposure through direct contact or through the indoor Inhalation pathway is not expected.*

Future Potential Human Receptors

As described below in Section 7.3, current land zoning at and in the area of the Subject Site is nonresidential. It is expected this zoning will continue in the foreseeable future. Therefore, the potential future receptors are presently identified as:

<u>ONSITE</u>

• Onsite Commercial Workers – LAC Building: *Future exposure to potential VOC vapors within the building is not expected as air sampling data was below Tier 2 RSKs for Residential Indoor Air.* Additionally, it should be noted that a 15-mil vapor barrier was installed as part of the foundation system when the building was constructed. No building additions are expected in the foreseeable future.

Direct exposure to surface soil is limited to grassy areas at the LAC property (dermal contact, ingestion and inhalation). *The current and previous assessments have not identified COCs exceeding Tier 2 Non-residential RSKs in surface soil/vadose zone across the Subject Site. Therefore, a potential adverse exposure is not expected in the future.*

Municipal water is provided to the Property and there are currently no public or private water wells located onsite. The City does not plan to install any supply wells in the future. *For this reason, we do not expect there will be a potentially adverse exposure to contaminated groundwater in the future.* Additional protection from potential future exposure could be provided if a deed restriction for water well installation is established.

• Onsite Construction Workers – *Workers could be potentially exposed to contaminants in soil and groundwater in the future through dermal contact, ingestion and inhalation.* The potential exposure is further discussed in Section 7.2

• **Onsite Residents** – A change in land use and zoning from Commercial to Residential is not expected in the foreseeable future. *Therefore the potential exposure to contaminants is not expected in the future.*

<u>OFFSITE</u>

• Offsite Commercial Workers – Price Chopper Property: Exposure to VOCs through the indoor Inhalation pathway was evaluated by EWI in 2019. *Soil gas sampling results did not exceed EPA VISL Calculator threshold concentrations which predict indoor air quality. It is expected that the risk potential in the future will be similarly unexpected.*

Direct exposure to surface soil is limited to grassy areas located along the south and west property boundaries (dermal contact, ingestion and inhalation). *The current and previous assessments have not identified COCs exceeding Tier 2 Non-residential RSKs in surface soil/upper portion of the vadose zone across the portions of the property where COCs have been identified. Therefore, a potential adverse exposure is not expected in the future.*

As there are no public or private water wells being used, it is our evaluation that adverse exposure for offsite commercial workers to contaminated groundwater present in the north or east portions at the property would not be expected in the future. Additional protection from potential future exposure could be provided if a deed restriction for water well installation is established.

- Offsite Commercial Workers Properties Located to West and Northwest: Commercial properties are also located west and northwest of the Subject Site. *As existing contaminated soil and groundwater exceeding Residential RSKs is not expected in these areas, future adverse exposure through direct contact or through the indoor inhalation pathway is not expected.*
- Offsite Construction Workers Properties Located to West and Northwest: As contaminated soil and groundwater exceeding Residential RSKs are not expected in these areas, workers at these commercial properties are not expected to be exposed in the future.
- Offsite Residents A change in land use and zoning from Commercial to Residential is not expected in the foreseeable future. *Therefore the potential exposure to contaminants is not expected in the future.*

The potential ecological receptors are discussed as part of Section 7.2.

Water Wells

As presented in Section 2.5 of the VCI Work Plan, a water well survey was conducted by SCS to locate public and private water supply wells within a 1-mile radius of the site. The Subject Site area is serviced by Leavenworth Waterworks, which uses treated surface water from the Missouri River alluvial aquifer for the municipal water supply (<u>http://www.lvnwater.com/20wqr.pdf</u>). Based on information obtained from the Kansas Geological Survey (KGS) Water Well Record (WWC5) database (<u>https://maps.kgs.ku.edu/wwc5/index.html?t=wwc5</u>), multiple monitoring/observation wells are located within 1 mile from the Subject Site. However, there do not appear to be any public water supply (PWS) wells or private/domestic wells located within one mile from the Subject Site. A well

location map obtained from the KGS WWC5 well database is included in Attachment C of the VCI Work Plan.

7.2 Potential Risk

Using the information presented in the preceding section, the following are identified as potential human receptors:

• Onsite Construction Workers – Previous and current site assessment data indicates that contaminated vadose soil is primarily present at a minimum depth of six feet bgs. This depth is expected to represent the upper extent of the capillary fringe; groundwater at and below this depth is impacted. There could be impacted soil above this depth; however, it would be expected to be limited to areas where former asphalt ASTs and fuel storage and dispensing operations were present in the southern portion of the Property. The primary COC in both soil and groundwater are petroleum hydrocarbons and associated VOCs and SVOCs

Therefore, workers could be potentially exposed to contaminants if trenches or other excavations are extended to a depth of at least six feet bgs and greater. Exposure could occur through dermal contact, inhalation and ingestion (groundwater). Site assessment information will be retained by the City Public Works Department so notification of the conditions can be made before construction proceeds on this City property.

• Offsite Construction Workers – Price Chopper Property: Previous site assessment data along the northern portion of this property indicates that contaminated vadose soil could be present at a minimum depth of approximately eight feet bgs. As with the Subject Site immediately north, this depth is expected to represent the upper extent of the capillary fringe; groundwater at and below this depth is impacted. However, it is our perspective that impacted soil could be present in surface soil and vadose zone in the area immediately east and northeast of the supermarket building and below South 3rd Street. This is where Lakes Auto Salvage operations extended in the past. The primary COC in both soil and groundwater are petroleum hydrocarbons and associated VOCs and SVOCs. Other isolated compounds were also formerly identified, including 2,6-dinitrotoluene, PCBs and pesticide compounds, although none exceeded their respective Tier 2 RSKs.

It is conservative to assume offsite construction workers could be potentially exposed to contaminants at any trench depth in the area immediately north and east of the supermarket building and within the right-of-way of South 3rd Street. West and southwest of the Subject Site, potential exposure could occur within trenches or other excavations extending to a depth of at least six to eight feet bgs and greater. Exposure could occur through dermal contact, inhalation and ingestion (groundwater). Construction work completed further west and south of this area would not be expected to encounter regulated substances originating from the Subject Site or Lakes Auto Salvage.

Ecological Receptors

The Subject Site is located immediately west-northwest of the current channel of Five Mile Creek (**Figure 2**). As discussed earlier, an oxbow channel backfilled by USACE is present below the Property. Therefore, groundwater immediately below the Subject Site is considered to be part of the Creek hydrogeologic system. The primary contaminant in groundwater are petroleum hydrocarbons. **Figure 14** presents the approximate lateral extent of the dissolved-phase hydrocarbon plume. It is

our professional opinion that the groundwater impact has been adequately assessed in all directions except to the east/east-southeast in the direction of the Creek.

Based on review of the United States Geological Survey (USGS) topographic map; the USGS National Map Advanced Viewer (https://viewer.nationalmap.gov/advanced-viewer/), which denotes state and federal parks, wilderness and wildlife areas, public lands, and significant natural features; and the Unites States Fish and Wildlife Service (USFWS) National Wetlands Inventory mapper (https://www.fws.gov/wetlands/data/mapper.html), there are no known nearby sensitive receptors, such as state parks or wetlands within a 500-foot radius of the Subject Site. The noted maps did identify Five Mile Creek located approximately 300 feet east-southeast of the Subject Site. Five Mile Creek flows north and east approximately ½-mile before draining into the Missouri River. Based on additional review of the Leavenworth County GIS Web Map noted above, the Federal Emergency Management Administration (FEMA) Flood Hazard Overlay indicates the Subject Site is located outside of the Five Mile Creek floodway, although 0.2% Annual Chance Flood Hazard areas do appear to touch on the northeast and southeast corners of the approximate Subject Site boundary. There are no other known surface water bodies within ¼-mile of the subject site. A copy of the USGS National Map and USFWS Wetlands Map are included in **Attachment C** in the VCI Work Plan.

An informal United States Fish and Wildlife Survey (USFWS) Information for Planning and Consultation (IPaC) query was performed for threatened and/or endangered species near the Subject Site on July 22, 2020 (<u>https://ecos.fws.gov/ipac/</u>). Results of the IPaC query indicated four species for potential consideration, as discussed below.

- Northern long-eared bat (*Myotis septentrionalis*) Threatened: Northern long-eared bats spend winter hibernating in caves and mines, most often in small crevices or cracks, with only the nose and ears visible. During the summer, northern long-eared bats roost singly or in colonies underneath bark, in cavities or crevices of both live trees and snags (dead trees). Males and non-reproductive females may also roost in cooler places, like caves and mines. The IPaC query indicates no critical habitat has been designated for this species.
- Pallid Sturgeon (*Scaphirhynchus albus*) Endangered: Pallid sturgeons evolved and adapted to living close to the bottom of large, silty rivers with a natural hydrograph. Their preferred habitat has a diversity of depths and velocities formed by braided channels, sand bars, sand flats and gravel bars. The pallid sturgeon is scarce in most Missouri River reaches. The IPaC query indicates no critical habitat has been designated for this species.
- Mead's Milkweed (Asclepias meadii) Threatened: Mead's milkweed requires moderately wet (mesic) to moderately dry (dry mesic) upland tallgrass prairie or glade/barren habitat characterized by vegetation adapted for drought and fire. It persists in stable late-successional prairie. The IPaC query indicates no critical habitat has been designated for this species.
- Western Prairie Fringed Orchid (*Platanthera praeclara*) Threatened: Occur most often in mesic to wet unplowed tallgrass prairies and meadows but have been found in old fields and roadside ditches. The IPaC query indicates no critical habitat has been designated for this species.

As the eastern lateral extent of dissolved-phase petroleum hydrocarbons is not specifically known at this time, it is possible that it may extend to the surface water body. However, this is considered unlikely as the majority of the identified impact are MRH and HRH fractions. These longer-chain hydrocarbons typically do not migrate large distances from the source area. The lateral distance

from the southeastern Subject Site boundary south to the nearest portion of the Creek is measured as approximately 125 feet. The data point in closest proximity in this area is Boring PB-3 which exhibits a TPH-MRH concentration of 0.249 mg/L; this result is below the Tier 2 Non-residential RSK of 0.4 mg/L and slightly above the Tier 2 Non-residential RSK of 0.15 mg/L (**Figure 14**). The lateral distance from the eastern Subject Site boundary east to the nearest portion of the Creek is measured as approximately 300 feet. The data point at the eastern Property boundary is Boring PB-7 which exhibits a TPH-MRH concentration of 1.97 mg/L. This result exceeds both the Tier 2 Non-residential and Residential RSKs.

As discussed above, at this time we are unable to provide an opinion as to whether the threatened and/or endangered species would be impacted by the known petroleum hydrocarbon impact. It should be noted that a critical habitat has not been designated locally for any of these species.

7.3 Land Use

The Subject Site is located in a commercial use area with immediately adjoining properties consisting of commercial businesses located to the south and west (**Figure 2**). The area immediately north is presently undeveloped and was the location of a City solid waste municipal landfill operation. Historically undeveloped land and Five Mile Creek is located immediately to the east. Viewed collectively, the Subject Site and immediately adjoining properties are located within the former and current creek channel area and associated floodplain.

Based on review of City of Leavenworth Zoning, obtained from City of Leavenworth GIS (<u>http://gis.firstcity.org/</u>), the Subject Site and adjoining properties to the north, east, and southeast of the site are zoned industrial (I-2), while adjoining properties to the west and southwest are zoned general business (GBD). The nearest residential zoning (R1-6) is located approximately 600 feet to the west/northwest of the Subject Site, on the west side of South 4th Street, as well as multi-family zoning (R-MF) located approximately 600 feet to the southeast of the Subject Site, on the east side of South 2nd Street. A parcel map identifying property lines, address points, and owner names within approximately 500 feet of the Subject Site was also obtained from the Leavenworth County GIS Web Map (<u>https://leavenworthgis.integritygis.com/H5/Index.html?viewer=leavenworth</u>). A copy of the zoning map and parcel map were included in Attachment C of the VCI Work Plan.

8.0 SUMMARY AND CONCLUSIONS

Past environmental assessments were performed by numerous other parties at and near the Subject Site from 1989 through 2019. These findings identified potential regulated COCs including total petroleum hydrocarbons, VOCs, SVOCs, RCRA metals, pesticides, and PCBs. The previously identified COCs were found to be present in portions of the Subject Site, rather than pervasively present across its entirety. Therefore, the data needs for this assessment varied by COC and was the basis of our Phase II ESA design presented in the approved VI Work Plan. SCS environmental assessment field activities were conducted from September 17 through 23, 2020.

Geology and Hydrogeology

The majority of the Subject Site is located within a portion of the historic Creek channel that was relocated by USACE in the late 1960's. This former channel is shown in **Figure 9**, and is observed as an "oxbow" geomorphic feature. It is assumed that this portion of the former channel was at least partially filled at this time, most likely with steam deposits reused from the general area. The figure also shows the location of the current LAC building and South 3rd Street. The present day Creek channel is located immediately south of the southeast portion of the Subject Site and generally appears as it did prior to the creek realignment. It should be noted that municipal solid waste was also placed in this area as is evidenced by earlier geotechnical and environmental studies and in soil cores obtained during this assessment.

Subsurface material encountered during the SCS field investigation primarily consisted of finegrained fill material previously placed in the former channel and surrounding area. Fill was present in all borings, although a considerably lesser thickness was observed at Borings PB-4 and PB-5, located along the western Property boundary. Native deposits were identified in these two borings, consisting of silty clay and clay, below the fill material (3.5 to four feet bgs downward). It appears that this area represents the west side of the former oxbow channel shown in **Figure 9**. Subsurface materials encountered during the SCS assessment are shown in Cross Sections A-A' and B-B', presented as **Figures 10-A** and **10-B**.

The fill material primarily consisted of silty clay without and with municipal solid waste included. Construction debris and general municipal trash was also present in the fill material. The fill material was noted in all borings to the maximum drilling depth of approximately 20 feet bgs. No suspect asbestos containing materials were identified by SCS during the field assessment.

Groundwater was encountered across the Subject Site. For borings located in areas of extensive fill, the approximate upper eight feet of the material was noted as damp and moist to a maximum depth of approximately 11 feet bgs; a significant increase in soil moisture content was noted below in the borings advanced into fill material. Groundwater immediately accumulated in these boreholes during drilling with saturated soil cores recovered. Conversely, the increase in moisture content in native unconsolidated soil at Borings PB-4 and PB-5 was observed at a depth ranging between approximately 11 and 12 feet bgs. These field observations indicate that groundwater is at a higher elevation and exhibits higher yield in the fill material as compared to the undisturbed native sediments.

Groundwater monitoring data was collected from the temporary piezometers installed by SCS. The depth to groundwater varied between 6.39 and 10.49 feet bgs in all borings except Borings PB-4 and PB-5 (17.74 and 17.35 feet bgs, respectively). This data supports the conclusion above that groundwater characteristics differ between the fill material and native soil, and is relevant to fate

and transport of COCs identified in groundwater. The potentiometric surface as measured exhibits a primary groundwater gradient directed to the east-southeast with an average magnitude of 0.01 foot-per-foot (**Figure 11**).

8.1 Summary of VCI Results

8.1.1 Nature and Extent of Contamination

Petroleum Hydrocarbons

The primary regulated substance identified at the Subject Site and south adjoining property is petroleum hydrocarbons. The predominant fraction present was TPH-MRH with lesser concentrations of TPH-HRH. No TPH-LRH was exhibited in soil samples; only one groundwater sample contained that fraction.

Soil – Former Fueling Areas: As shown in **Table 1A**, only detectable HRH concentrations were exhibited at Boring BP-1/1A (former gasoline UST area) and both TPH-MRH and TPH-HRH were exhibited at Boring BP-9 located in the area of the former AST diesel fueling area (**Figure 12-A**). No detectable TPH concentrations were indicated from the samples collected at the other former gasoline UST area (Boring PB-2), located between Borings BP-1/1A and PB-9. Analytical results for the assessment completed by EWI near the former Subject Site fueling facilities at the south-adjoining property also exhibit TPH-MRH and TPH-HRH concentrations.

With respect to the nature and extent of contamination at onsite former fueling areas, it is important to note that only approximately eight to nine vertical feet of vadose zone soil is present, and it is expected that the former gasoline UST areas would have been excavated either near or into groundwater present in the fill material. Therefore, a significant impact in vadose zone soil would not necessarily be required to have also impacted groundwater. Conversely, petroleum hydrocarbons in the former AST area would have likely entered the subsurface from the surface and migrated downward. The lateral extent of TPH-MRH and TPH-HRH is also present at the south adjoining property as evidenced by environmental data obtained by EWI in 2019. The combined SCS and EWI analytical data indicates the occurrence of petroleum hydrocarbons in soil across this area, suggests a source area at the former onsite fueling areas. However, the identified offsite impact may have also resulted from releases of petroleum hydrocarbons from Lakes Auto Salvage that had operations formerly present in the area of South 3rd Street and immediately north of the Price Chopper Building.

Soil – Former East Asphalt Storage Area: SCS also collected soil samples in the loading area immediately north of the former east asphalt storage area (Boring PB-3; **Figure 12-A**). These samples exhibited both detectable TPH-MRH and TPH-HRH concentrations in both the upper and lower samples. Soil encountered from the surface to the shallow soil sampling interval consisted of newer fill material placed during construction of the LAC building in 2013. It is our conclusion that TPH-MRM and TPH-HRH present in vadose zone soil at the former AST storage area is likely not related to the fueling areas located to the west. The presence of petroleum hydrocarbons in the upper soil sample suggests a source area in this area, either due to former asphalt storage, impacts from Lakes Auto Salvage, or both. Petroleum hydrocarbons present in the lower soil sample is either related to a localized source area, or due to lateral migration of impacted groundwater from the west near the former fueling areas.

Groundwater – Subject Site and South Adjoining Property: Again, petroleum hydrocarbons (TPH-MRH and TPH-HRH) are the primary regulated substance present in Subject Site groundwater. Nine of eleven groundwater samples exhibited detectable TPH-MRH concentrations, of which eight exceeded either the Residential or Non-Residential Tier 2 RSK (**Figure 13-A**). The highest concentrations were at Borings PB-1, PB-7 and PB-9. Similarly, TPH-HRH fractions were detected in eight of the samples; however, only two locations exceeded the Residential Tier 2 RSK (Borings PB-7 and PB-9), with Boring PB-9 also exceeding the Non-residential Tier 2 RSK. Only one sample (and duplicate) exceeded the minimum laboratory detection limit for TPH-LRH (Boring PB-1/1A). This boring is located in the area of the western-most former gasoline UST area. The results of 1.41 mg/L and 1.43 mg/L (duplicate) exceeded the Residential and Non-Residential Tier 2 RSKs of 0.35 and 0.95 mg/L, respectively.

Figure 14 presents TPH concentrations at the Subject Site and south adjoining Price Chopper property. The figure is also an isoconcentration map for TPH-MRH. The maximum TPH-MRH concentration is noted at Boring PB-9, the former location of the diesel AST fueling area. Surrounding sampling locations show the approximate lateral extent of this petroleum hydrocarbon fraction. Two of the TPH-MRH isoconcentration lines represent the Tier 2 Residential and Nonresidential RSK values; these are 0.15 and 0.4 mg/L, respectively. The approximate south-central and eastern portion of the Subject Site exhibits TPH-MRH exceeding the Tier 2 Non-residential RSK. The majority of the Subject Site has TPH-MRH concentrations exceeding the Tier 2 Residential RSK, with the plume likely extending easterly toward the present Five Mile Creek Channel.

Volatile Organic Compounds

Soil – **Subject Site:** As shown in **Table 1B**, VOCs present in SCS soil samples exceeding minimum laboratory detection limits included benzene, toluene, ethylbenzene, xylenes and naphthalene. These compounds are commonly associated with fuel-range petroleum hydrocarbons and their presence in these areas are not unexpected as TPH-LRH and TPH-MRH is present. A limited number of other VOCs, including isopropylbenzene, n-propylbenzene, methyl tert-butyl ether (MtBE), 1,2,3-trimeythlbenzene, 1,2,4-trimeythlbenzene, chlorobenzene, 1,2-dichlorobenzene, and 1,4-dichlorobenzene were also present and not unexpected for petroleum hydrocarbon impacts. None of these results exceed their respective Tier 2 RSKs.

The shallow soil sample collected from Boring PB-3 in the area of the former asphalt storage area also exhibited generally low concentrations of chlorinated solvent compounds, including cis-1,2 DCE, trans-1,2 DCE, TCE) and PCE. However, none of these compounds exceeded their respective Tier 2 RSK concentrations. Also of note, the sample collected at a depth approximately 5.5 feet lower did not report detectable concentrations of any of the compounds.

Groundwater – Subject Site and South Adjoining Property: As shown in **Table 2A**, there were a number of VOCs present in SCS groundwater samples. These are primarily associated with refined petroleum hydrocarbons and degradation products. Although detected in the shallow sample at Boring B-3, no chlorinated solvents (PCE, TCE, cis-1,2 DCE or trans-1,2 DCE) were exhibited in any of the samples.

The VOCs that exceeded Tier 2 Residential and Non-residential RSKs at the Subject Site included benzene and naphthalene (**Table 2A**). The maximum benzene and naphthalene concentrations were noted at the west-most former gasoline UST area; lesser concentrations are present in groundwater to the central and east-central areas (**Figure 13-A**). No benzene or naphthalene concentrations exceeded minimum laboratory detection limits in groundwater samples collected by EWI at the adjoining Price Chopper property.

Semi-Volatile Organic Compounds

Soil – **Subject Site and South Adjoining Property:** SVOC analysis was completed for onsite samples expected to contain the highest TPH-MRH and TPH-HRH concentrations, including PB-1/1A and duplicate (9.5 to 11 feet bgs), PB-3 (1.5 to 3.5 feet bgs) and PB-9 (9 to 11 feet bgs). As shown in **Table 1D**, there were a number of common SVOCs exceeding minimum laboratory detection limits. However, none of the detections exceeded their respective Tier 2 RSK concentrations. EWI also completed limited SVOC analysis at the south adjoining property; however, no results exceeded minimum laboratory reporting limits.

Results indicate the presence and distribution of SVOCs present in the lower samples are generally consistent with where TPH-MRH and TPH-HRH is also present. They are expected to be laterally persistent with the fuel impact and may be present at greater depths of the saturated zone. SVOCs present in the upper sample collected near the former eastern asphalt storage area is likely related to oil-range hydrocarbons formerly handled in this area, from vehicle storage operations at Lakes Auto Salvage, or both. The lateral extent of these compounds in vadose zone soil is not known; however, due to their physical characteristics, do not typically migrate laterally as pervasively as VOCs.

The SVOCs analysis also included reporting 2,6-dinitrotoleune as the EWI investigation in 2019 had identified this compound in groundwater at one location on the south adjoining property north of the intersection of South 3rd Street and Marion Street (MW-7; **Figure 13-A**). This compound was not identified above minimum laboratory limits in the soil samples analyzed.

Groundwater – Subject Site and South Adjoining Property: Analysis was completed for all eleven groundwater samples collected by SCS (**Table 2B**). The primary SVOC encountered exceeding laboratory reporting limits was naphthalene, present in four boring locations across the central, southern and southeast portions of the Subject Site. The detections appear to be associated with TPH-MRH concentrations (Figure 13-A), and exceed the both the Residential and Non-residential Tier 2 RSK values. Groundwater samples collected by EWI at the south adjoining property were not analyzed for SVOCs. It is expected that naphthalene could also be present in the northern portion of the Price Chopper property where TPH-MRH has been identified.

There were a limited number of other detectable SVOCs, including acenaphthene, fluorene, phenanthrene at Boring PB-9. However, none exceeded their respective Tier 2 RSKs. There were also two bis(2-ethylhexyl)-phthalate concentrations exceeding minimum laboratory reporting limits. This included Borings PB-1/1A (0.00697 mg/L) and PB-11 (0.00607 mg/L). The detections slightly exceed the Residential/Non-Residential Tier 2 RSK of 0.006 mg/L; however, the compound is not present laterally across the Subject Site. It should be noted that no 2,6-dinitrotoleune was identified in groundwater exceeding minimum laboratory reporting limits.

RCRA Metals

Soil – **Subject Site and South Adjoining Property:** As shown in **Table 1C**, RCRA metals in SCS soil samples exceeding minimum laboratory detection limits included arsenic, barium, cadmium, chromium, lead and mercury. Aside from an elevated lead concentration in one sample (Boring PB-3 at approximately 9 to 11 feet bgs – 4,770 mg/kg), all results are below their respective Tier 2 RSKs. Even though the majority of samples were collected from fill material, the resulting concentrations appear to be generally within naturally-occurring concentrations. Similar results were exhibited in the sample collected by EWI at the south adjoining property. As with SCS, one elevated lead

concentration was also indicated (Boring SB-5 from approximately four to five feet bgs – 432 mg/kg). The two elevated lead concentrations are present in the southwest portion of the Subject Site and below South 3rd Street. This includes the area within and immediately adjacent to where Lakes Auto Salvage has historically operated. The combined soil sampling results did not suggest the elevated lead occurrence is either laterally or vertically continuous.

Groundwater – Subject Site and South Adjoining Property: SCS collected six groundwater samples to provide representative metals data across the Subject Site (**Table 2C**). Metals analysis was also completed as part of previous investigations at the Subject Site and south adjoining property, including Terracon in 1989, EPA in 1999 and EWI in 2019. Results from the 1989 and 1999 assessments identified metal concentrations exceeding the current Residential/Non-residential Tier 2 RSKs for arsenic, barium, cadmium, chromium and lead (**Table 2C**) However, summary reports did not identify if these results reported total metal or dissolved metal concentrations. SCS dissolved metal results have identified arsenic, barium and lead exceeding laboratory reporting limits (**Table 2C**). Only three occurrences exceeded their respective Tier 2 RSK values, including Borings PB-5 (arsenic; 0.0486 mg/L), Boring PB-8 (barium; 5.19 mg/L) and Boring PB-10 (lead; 0.0261 mg/L) as shown on **Figure 13-B**. None of these exceedances are observed as laterally continuous.

Additional dissolved metal analysis was completed by EWI in 2019 at the Price Chopper property. This assessment identified arsenic and barium exceeding the laboratory reporting limits, with the arsenic concentration of 0.015 mg/L for both samples slightly exceeding the Residential/Non-residential Tier 2 RSK of 0.01 mg/L (**Figure 13-B**).

Pesticides

Soil and Groundwater – Subject Site: Pesticides analysis was completed for all eight SCS soil samples as isolated pesticide occurrences (D,D,D-4,4' and pentachlorophenol) were noted in groundwater samples during completion of the EPA BTA in 1999 (Samples 100 and 105; Figure 13-A). The location of the two occurrences included near the northwest corner of the LAC Building and near the former AST diesel storage area (Figure 5A-1). Although no past soil detections were noted, SCS completed soil analysis to augment that also previously completed for groundwater. No pesticides were identified above minimum laboratory limits in any of the soil samples. Pesticides analysis was completed for three groundwater samples collected by SCS along the southern portion of the Subject Site (Table 2B). Neither of these, or other pesticide compounds, were identified above minimum laboratory limits in the SCS groundwater samples.

PCBs

Soil - Subject Site: PCB analysis was completed for both upper and lower soil samples obtained from borings located along the southern Subject Site boundary as a PCB occurrence (Aroclor 1254) was identified in a soil sample collected by EWI in 2019. The location is at the northeast corner of the Price Chopper Building (**Figure 4A-1**). No PCBs were identified above minimum laboratory limits in any of the SCS soil samples analyzed.

Air Sampling – LAC Building

Two air samples were collected from inside of the LAC Building and submitted for VOC analysis **(Table 4)**. Analytical results exhibited a limited number of compounds exceeding minimum laboratory reporting limits, none of which exceeded their respective Tier 2 RSKs for the Residential Indoor Air Pathway. Based on COC present in the subsurface, compounds of particular interest included benzene, naphthalene and chlorinated solvents. Benzene and naphthalene were not

reported above laboratory method limits. PCE was the only chlorinated solvent present in indoor air with a maximum result of 5.11 ug/m3. This concentration is approximately eight times lower than the Tier 2 RSK.

Indoor air conditions were previously evaluated for the Price Chopper Supermarket building by EWI in 2019. Three soil gas samples were collected along the north side of the building, near the southern portion of the Subject Site (**Figure 6**). The resulting data was evaluated using the EPA VISL Calculator. Although analytical results indicated a number of common VOCs exceeding minimum laboratory reporting limits (**Table 3**), none exceeded EPA VISL Commercial Target Concentrations for Exterior Soil Gas. Only chloroform was identified above these threshold concentrations for Residential use.

8.1.2 Contaminant Fate and Transport

Potential Migration Routes

Petroleum Hydrocarbons and Related VOCs/SVOCs: City garage operational data and historical sources of information for Lakes Auto Salvage indicate that the majority of currently identified impact(s) to soil and groundwater occurred a considerable time in the past. A fuel AST and USTs operated at the Subject Site between 1972 and 1991. Although site records indicate that both diesel and gasoline fuel was dispensed, analytical data exhibits primarily a TPH-MRH fraction present in soil and groundwater. This data supports a conclusion that shorter-chain hydrocarbons have undergone natural degradation though time. This may also explain why there is TPH-HRH compounds present. Additionally, it is also reasonable to assume that petroleum hydrocarbons (fuel and oil range) were primarily introduced directly to the ground surface in the area of the former Lakes Auto Salvage.

Onsite areas where petroleum hydrocarbon impacts to shallow soil have likely occurred include the east asphalt storage area and in the area of the former AST fueling area. In both these areas if spills had occurred, it is typically during filling fuel or loading asphalt in areas without a surface asphalt or concrete surface. Potential releases from piping would migrate through the soil to groundwater. Conversely, potential releases from the USTs would be expected to directly impact groundwater and associated capillary fringe directly as the tank basin would have likely been excavated to at least that depth. Once in the subsurface, contaminants from the fueling facilities would mostly migrate laterally through the groundwater pathway.

Lakes Auto Salvage has operated from at least 1949, historically on both the north and south sides of Marion Street. Additionally, salvaged vehicles were present in the area of the current South 3rd Street and the eastern-most portion of the Price Chopper property (**Figure 15**). Common COCs for salvage operations include fuel- and oil-range hydrocarbons, SVOCs, VOCs and metals. The substances typically enter the subsurface at the ground surface and migrate downward in the soil column through natural leaching mechanisms. Groundwater can also be impacted if sufficient contaminant mass exists.

Other Regulated Compounds: The remaining regulated substances previously and currently identified in subsurface soil are minor occurrences of PCBs, chlorinated solvents and RCRA metals including lead exceeding the Tier 2 RSK. In groundwater, these regulated substances include a pesticide (D,D,D-4,4'), an SVOC commonly associated with explosives manufacturing and use (2,6-Dinitrotoluene) and RCRA metals. The metals in SCS groundwater samples exceeding Tier 2 RSKs include arsenic, barium and lead.

It is common for pesticides to be applied at the surface, with downward migration into subsurface soil, and potentially groundwater, leaching with precipitation. Areas exhibiting elevated metal concentrations in soil also leach downward. It is important to note that these detections are limited in quantity and lateral and vertical extent in soil, and in the case of metals exceeding Tier 2 RSKs, are identified at isolated sampling points rather than being laterally continuous.

Contaminant Migration

If a spill occurred at the surface, downward contaminant migration to the capillary fringe and shallow groundwater would be expected. In the case of a UST fueling system release, contaminants can be released directly to subsurface soil (ground spills or subgrade piping) or directly to groundwater from USTs and other basin releases.

For this Property, we conclude the majority of petroleum hydrocarbon mass is present in the capillary fringe and saturated zone and dissolved in groundwater. Concentrations of and the estimated lateral extent of petroleum hydrocarbons in groundwater are shown in **Figure 14**. The assumed extent of contamination encompasses former onsite fueling areas and east asphalt storage area, as well as the location of historic operations of Lakes Auto Salvage beneath current day South 3rd Street and eastern-most portion of the Price Chopper property.

The dissolved phase petroleum hydrocarbon plume extends generally eastward toward the current Creek channel located immediately east of the Subject Site and former auto salvage. When evaluating migration of contaminants in groundwater, there are site-specific factors to consider. Firstly, the Property is located within the stream and fluvial deposits system of Five Mile Creek. This subsurface area has been reworked and altered by both USACE during realignment of the system channel. Placement of mixed soil, construction debris and municipal wastes occurred between 1969 through 1972. Soil cores recovered during previous geotechnical and environmental assessments, as well as the current assessment have described the fill area as having a lower degree of density and higher degree of saturation when compared to immediately surrounding areas. This "fill area" also exhibits a higher static groundwater level as compared to the land area to the west portion of the Subject Site. Static groundwater was measured in the natural deposits at Borings PB-4 and PB-5 more than ten feet lower than in the fill material. The fill area can be visualized as a "bathtub" that retains surface water and having physical characteristics that encourages a higher flow regime and lateral migration potential as compared to the area with mostly natural deposits and limited fill material.

The groundwater gradient direction for September 21, 2020 is primarily directed toward the eastsoutheast (**Figure 11**), while dissolved-phase petroleum hydrocarbons are shown across the majority of the Subject Site (**Figure 14**). Furthermore, the highest concentrations appear to be migrating from the apparent source areas to the east-northeast. This can be better understood when considering the location of the former oxbow portion of the stream channel prior to USACE alignment (**Figure 9**). It is our conclusion that the former backfilled channel has an effect on the overall flow dynamics below the Subject Site and likely influences contaminant migration. Interestingly, other isolated occurrences of contaminants in groundwater exceeding Tier 2 RSKs are present within or near the former channel area (**Figure 13-A**). These include pentachlorophenol and Bis (2-ethylhexyl)phthalate in Borings PB-1 and PB-11. Similarly, isolated occurrences of dissolved metals exceeding Tier 2 RSKs are also present, including arsenic in Boring PB-5, lead in Boring PB-10 and barium in Boring PB-8 (**Figure 13-B**).

8.1.3 Identified Receptors/Risk

Based on the information presented in Section 7.1, the following are identified as potential human receptors:

• Onsite Construction Workers – Previous and current site assessment data indicates that contaminated vadose soil is primarily present at a minimum depth of six feet bgs. This depth is expected to represent the upper extent of the capillary fringe; groundwater at and below this depth is impacted. There could be impacted soil above this depth; however, it would be expected to be limited in areas where former asphalt ASTs and fuel storage and fuel dispensing and storage were formerly present in the southern portion of the Property. The primary COC in both soil and groundwater are petroleum hydrocarbons and associated VOC and SVOCs

Therefore, workers could be potentially exposed to contaminants if trenches or other excavations are extended to a depth of at least six feet bgs and greater. Exposure could occur through dermal contact, inhalation and ingestion (groundwater). Site assessment information will be retained by the City Public Works Department so notification of the conditions can be made before construction proceeds on this Property.

• Offsite Construction Workers – Price Chopper Property: Previous site assessment data along the northern portion of this property indicates that contaminated vadose soil could be present at a minimum depth of approximately eight feet bgs. As with the Subject Site immediately north, this depth is expected to represent the upper extent of the capillary fringe; groundwater at and below this depth is impacted. However, it is our perspective that impacted soil could be present in surface soil and vadose zone in the area immediately east and northeast of the supermarket building and below South 3rd Street. This is where Lakes Auto Salvage operations extended in the past. The primary COC in both soil and groundwater are petroleum hydrocarbons and associated VOC and SVOCs. Other isolated compounds were also formerly identified, including 2,6-dinitrotoluene, PCBs and pesticide compounds, although none exceeded their respective Tier 2 RSKs.

It is conservative to assume offsite construction workers could be potentially exposed to contaminants at any trench depth in the area immediately north and east of the supermarket building and within the right-of-way of South 3rd Street. West and southwest of the Subject Site, potential exposure could occur within trenches or other excavations extending to a depth of at least six to eight feet bgs and greater. Exposure could occur through dermal contact, inhalation and ingestion of groundwater. Construction work completed further west and south of this area would not be expected to encounter regulated substances originating from the Subject Site or Lakes Auto Salvage.

Ecological Receptors

As the eastern lateral extent of dissolved-phase petroleum hydrocarbons is not specifically known at this time, it is possible that it may extend to the surface water body. However, this is considered unlikely as the majority of the identified impact are TPH-MRH and TPH-HRH fractions. These longerchain hydrocarbons typically do not migrate large distances from the source area. The lateral distance from the southeastern Subject Site boundary south to the nearest portion of the Creek is measured as approximately 125 feet. The data point in closest proximity in this area is Boring PB-3 which exhibits a TPH-MRH concentration of 0.249 mg/L; this result is below the Tier 2 Non-residential RSK of 0.4 mg/L and slightly above the Tier 2 Non-residential RSK of 0.15 mg/L (**Figure 14**). The lateral distance from the eastern Subject Site boundary east to the nearest portion of the Creek is measured as approximately 300 feet. The data point at the eastern Property boundary is Boring PB-7 which exhibits a TPH-MRH concentration of 1.97 mg/L. This result exceeds both the Tier 2 Non-residential and Residential RSKs.

At this time we are unable to provide an opinion as to whether the threatened and/or endangered species could be impacted by the known petroleum hydrocarbon impact. It should be noted that a critical habitat has not been designated for any of these species in this area.

8.2 Conclusions

Assessment Status of Identified COCs

Subject Site – Petroleum Hydrocarbons: Previous and the current assessments have identified primarily diesel- and oil-range petroleum hydrocarbons in soil and groundwater at the Subject Site. As groundwater is present at a shallow depth, a laterally pervasive impact to vadose zone soils is not expected. Therefore, it is our conclusion that additional vadose zone assessment in areas extending from the former fueling areas is unwarranted.

Conversely, it is expected that additional assessment of petroleum hydrocarbons and associated fuel-range VOCs/SVOCs in the capillary fringe and groundwater exceeding respective Non-residential Tier 2 RSKs is warranted to the east. As the highest dissolved-phase TPH-MRH and TPH-HRH concentrations have been shown to be present at the former fueling areas and migrating through the groundwater migration pathway, it is our conclusion that sufficient evidence has been obtained to enroll the Property with the Storage Tank Section. It would be the intention of the City to recover future assessment and potential remediation costs through the state reimbursement program. It is recommended that any future assessment be performed following enrollment. It is our evaluation that installation of monitoring wells at and near the Subject Site would be beneficial to provide information for dissolved-phase plume stability and natural attenuation.

Offsite Properties – Petroleum Hydrocarbons: Specific to the south adjoining properties, historical information and previous field assessment and analytical data supports a conclusion that the subsurface at the northeast portion of the Price Chopper property and beneath South 3rd Street has also been impacted by petroleum hydrocarbons. Because of proximity, it is not unreasonable to conclude that the former onsite fueling areas could have affected the subsurface immediately north of the supermarket building, particularly through groundwater migration of contaminants. However, the possibility that some, most, or all of the observed contamination in this area originated from approximately 70 years of salvage operations at Lakes Auto Salvage (**Figure 15**). This would be expected to include releases at the surface that have migrated through vadose zone soil, with the potential to have also impacted shallow groundwater in this area. Therefore, we consider this entity to be a potentially responsible party.

Subject Site – VOCs in Proximity of East Asphalt Storage Area: The current assessment identified chlorinated solvent compounds including cis-1,2 DCE, trans-1,2 DCE, TCE and PCE in soil in the area of the former asphalt storage area. The compounds were identified in the shallow sample (approximately 1.5 to 3.5 feet bgs) collected from Boring PB-3; however, they were not reported in the deeper sample collected at a depth of approximately 9 to 11 feet bgs. The associated groundwater sample at this location also did not report these compounds above minimum laboratory

limits. This soil impact was not identified by previous assessments. It is possible that the origin may have been from past VOC use at the former City sign shop; however, this area is located near the northern portion of Lakes Auto Salvage operations. It is likely these compounds were introduced at the surface due to their presence in shallow soil, and are now effectively "capped" onsite by the engineered fill placed during site grading and construction of the LAC Building. It is important to understand that grading was completed through this portion of the Subject Site in all directions to the approximate south Property boundary. Conversely, they may be present in surface soil at the south adjoining Lakes Auto Salvage operations. Because of the limited extent in soil, absence of detectable groundwater concentrations and placement of the soil cap, we consider this issue effectively addressed for the Subject Site.

Subject Site – VOCs in Proximity of Former Sign Shop: As discussed previously in Section 2.2.2, VOCs were used at the former sign shop and paint and paint thinner waste was identified in surface soil during a KDHE compliance inspection in 1991. The location of the reported area was immediately north of the former building. Soil samples were collected to a maximum depth of approximately 24 inches in this area in late 1991 and analyzed for TCLP RCRA metals, TCLP SVOCs and TCLP VOCs. The soil samples were also analyzed for VOCs, with ethylbenzene and toluene reported above minimum detection limits. Subsequently, approximately 60 tons of contaminated soil was excavated at disposed of offsite.

As this area is located beneath the LAC Building footprint, soil samples could not be collected by SCS. However, this area was assessed by collecting groundwater samples from Borings PB-3, PB-7 and PB-8 surrounding the former sign shop (**Figure 13-A**). A number of VOCs were reported in PB-7 and PB-8; however, only benzene (PB-7 and PB-8) and naphthalene (PB-8) exceeded the Tier 2 Residential and Non-residential Groundwater Pathway RSKs. The groundwater sample collected from Boring PB-11 located in the northeast most part of the Subject Site also reported benzene, but below the Tier 2 Residential Groundwater Pathway RSK; no naphthalene, toluene or ethylbenzene was reported above minimum laboratory limits. Additionally, the aforementioned Boring PB-3 at the former east asphalt storage area reported only 1,4-dichlorobenzene and naphthalene (0.0028 mg/L) in groundwater, slightly above the Tier 2 Residential and Non-residential Groundwater Pathway RSKs of 0.00111 and 0.00211 mg/L.

The occurrence of dissolved-phase benzene, naphthalene and other non-chlorinated solvent VOCs in this area may be related to the former sign shop or associated with the TPH-MRH and TPH-HRH impact. In either case, the identified VOCs have been assessed in groundwater to below the Tier 2 RSKs in all directions aside to the east and southeast. If additional assessment is considered appropriate specifically for these VOCs, it can be accomplished while conducting the additional assessment recommended above for petroleum hydrocarbons.

Subject Site – RCRA Metals at Former East Asphalt Storage Area: The only RCRA metal in soil samples collected as part of current and previous onsite assessments exceeding a Tier 2 Residential or Non-residential RSK was total lead at Boring PB-3 (4,770 mg/kg; approximately 9 to 11 feet bgs). However, elevated lead was not indicated in the sample collected immediately above this depth from approximately 1.5 to 3.5 feet bgs. The elevated concentration observed only at depth would not be expected unless it is associated with fill material placed during or after realignment of the Creek channel. No dissolved lead exceeding the minimum laboratory reporting limit was exhibited in the associated groundwater sample at this location. As no direct human exposure is expected in this area, we conclude additional onsite assessment is not warranted. It is noted that elevated metals were identified in the south portion of the Property during the 1999 BTA. However, based on our sampling results, the previous data is expected to have been for total lead, rather than dissolved lead in groundwater.

Subject Site – Dissolved RCRA Metals: Groundwater results from six sampling locations exhibited only three dissolved metal concentrations exceeding Tier 2 Non-residential and Residential RSKs across the Subject Site (**Table 2C** and **Figure 13-B**). They include arsenic (PB-5; 0.0486 mg/L), barium (PB-8; 5.19 mg/L) and lead (PB-10; 0.02161 mg/L); the remaining seven metals at all these locations were below the Tier 2 RSKs. The elevated lead present in the northwest portion of the Subject Site is likely associated with known lead contamination at the former GNB, Inc. facility identified in the 1999 BTA. The origin for the elevated dissolved arsenic and barium is not known; however, it is noted that both locations are near the former Creek channel filled by USACE in the late 1960's. As these limited occurrences are not laterally continuous, it is our conclusion that additional groundwater assessment is not necessary as human and ecological receptors are adequately protected. Also as discussed in the preceding paragraph, it is our conclusion that elevated metal concentrations identified at the Subject Site by USEPA in 1999 were analyzed as total, rather than dissolved metals.

South Adjoining Property – RCRA Metals: The 2019 EWI investigation at the south adjoining property identified elevated total lead in soil in the general vicinity of present day South 3rd Street. As shown on **Figure 4A-1**, elevated lead is present near the northeastern corner of the supermarket building, extending southward along the west side of the street. However, no dissolved-phase total lead concentrations were reported above minimum laboratory limits in groundwater samples from Borings SB-5 and SB-7. The analytical data supports a conclusion that lead impacts in this area are likely due to former Lakes Auto Salvage operations in this area, and not related to former City operations further to the north.

Subject Site and South Adjoining Properties – Other Regulated Compounds: Other regulated compounds identified by previous studies, including pesticides, 2,6-dinitrotoluene and PCBs were not detected above minimum laboratory reporting limits in SCS soil or groundwater samples collected within the Subject Site boundary. Therefore, we conclude these compounds are adequately assessed onsite. Furthermore, it is our professional opinion these compounds are more likely to have originated from the former Lakes Auto Salvage. Our research has identified that 2,6-dinitrotoluene is commonly used for explosives, including automotive air bags. It should be noted that the KDHE-BER Site Assessment Unit will conduct a separate field assessment for 2,6-dinitrotoluene in this area and south and east in proximity to Five Mile Creek. Per previous agreement, the resulting analytical data will be submitted to the City for review.

8.2.1 Data Limitations

The VI Work Plan presented the proposed field and analytical data to be obtained for this assessment. No deviations occurred while conducting the field portion of the VI Assessment. Also as discussed in Section 4.3, QA/QC data and laboratory report qualifiers were evaluated. Analytical results were deemed to be acceptable for use in entirety to assist in evaluating the presence, concentrations and distribution of potential COCs.

8.2.2 Recommendations

Recommendations specific to the assessment for individual regulated substances are provided above in Section 8.2.

SCS recommends that the VCPRP reevaluate what future regulatory oversight is necessary for this Property, as in our professional opinion, the identified COC that requires additional groundwater assessment or potential remediation are petroleum hydrocarbons (and associated VOCs/SVOCs).

We recommended that the City enroll and submit this Property for oversight and reimbursement costs through the KDHE-BER Storage Tank Reimbursement Program. We therefore, also ask the VCPRP to provide a specific determination whether non-fuel related substances identified at the Subject Site have been effectively addressed. Also in our professional opinion, additional assessment for the south adjoining properties, if required, should be led by Lakes Auto Salvage as the potentially responsible party.

9.0 TABLES

Table 1A - Applicable Soil Analytical Results - Previous and Current Assessments **TCLP and TPH Analysis - Varying Methods**

Former City Garage Operations 2109 South 3rd Street Leavenworth, Kansas

SCS Engineers Project Number 27220109.01 KDHE Project Code: C4-052-73682

		Constitu		Laborato	y Analytical R	esults (milligra	ıms per kilogran	n) and Test Me	thods	
Boring/Sample ID	Date Sampled	Sample Depth (feet bgs)	TCLP - VOCs	TCLP - SVOCs	ТРН	ТРН	TPH - (all fractions)	TPH-LRH	TPH-MRH	TPH-HRI
orrooon 1080		(******3*)	Not Identified	Not Identified	0A-1	OA-2	Not Identified	KS LRH	KS MRH	KS HRH
erracon - 1989 B-1	11/24/89	2	NA	NA	NA	NA	ND ¹	NA	NA	NA
B-2	11/24/89	2	NA	NA	NA	NA	ND ¹	NA	NA	NA
B-3	11/24/89	2	NA	NA	NA	NA	ND ¹	NA	NA	NA
MW-3	11/24/89	2	NA	NA	NA	NA	140	NA	NA	NA
MW-4	11/24/89	2	NA	NA	NA	NA	260	NA	NA	NA
ansas City Testing	Laboratory -	1991								
6" Composite	10/31/91	0.5	ND ²	ND ²	NA	NA	NA	NA	NA	NA
18-24" Composite	10/31/91	1.5-2	ND ²	ND ²	NA	NA	NA	NA	NA	NA
PA BTA - 1999										
003	12/02/98	12-16	NA	NA	ND ³	ND ³	NA	NA	NA	NA
023	12/02/98	0-4	NA	NA	ND ³	ND ³	NA	NA	NA	NA
024	12/02/98	0-4	NA	NA	ND ³	ND ³	NA	NA	NA	NA
025	12/02/98	4-8	NA	NA	ND ³	ND ³	NA	NA	NA	NA
nvironmental Works	- 2019	-								
SB-1	10/10/19	26-27	NA	NA	NA	NA	NA	ND	ND	30.4
SB-2	10/10/19	22-23	NA	NA	NA	NA	NA	ND	ND	21.8
SB-3	10/10/19	18-19	NA	NA	NA	NA	NA	ND	ND	34.2
SB-4	10/10/19	11.5-12.5	NA	NA	NA	NA	NA	ND	16.7	88.8
SB-5	10/10/19	4-5 8-10	NA NA	NA NA	NA NA	NA NA	NA NA	NA ND	NA 29.5	NA 327
SB-6	10/10/19	4-6	NA	NA	NA	NA	NA	ND	12.7	92.5
SB-7	10/10/19	24-25	NA	NA	NA	NA	NA	ND	ND	43.4
CS Engineers - 2020)									
PB-1A (PB-1)	09/17/20	2-4 9.5-11	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	ND ND	ND 18.6
Soil Dup Collected with PB-1A	09/17/20	9.5-11	NA	NA	NA	NA	NA	ND	ND	18.7
PB-2	09/17/20	1-3 12-14	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	ND ND	ND ND
PB-3	09/18/20	1.5-3.5 9-11	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	321 43.4	209 301
PB-9	09/17/20	2-4 9-11	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	ND 15.8	57.5 69.0
KDHE Split Sample Collected with PB-9	09/17/20	2-4	NA	NA	NA	NA	NA	ND	ND	ND
			к	DHE Tier 2 Risk	-based Scree	ning Levels				
Residential Scena	rio, Soil Path	way	NE	NE	NE	NE	NE	550	250	6,000
Residential Scena Protection Pathwa	rio, Soil to G		NE	NE	NE	NE	NE	50	50	6,000
Non-Residential S		Pathway	NE	NE	NE	NE	NE	950	350	27,500
Non-Residential S		to	NE	NE	NE	NE	NE	150		13,000

bgs = below ground surface

NA = not analyzed ND = not detected above laboratory reporting limit

NE = not established ¹ = Less than 50 mg/kg

² = Less than varying minimum laboratory detection limits

TCLP = toxic characteristic leaching procedure VOCs = volatile organic compounds SVOCs = semi-volatile organic compounds TPH = total petroleum hydrocarbons

LRH = low range hydrocarbons

MRH = mid range hydrocarbons HRH = high range hydrocarbons

KS = Kansas

Detected concentratrions shown in **bold**

Concentrations above Residential Tier 2 Risk-based Screening Levels highlighted in yellow

³ = Identified in BTA report as "no significant detections for the parameters tested"

Table 1B - Applicable Soil Analytical Results - Previous and Current Assessments **VOC Analysis**

Former City Garage Operations 2109 South 3rd Street Leavenworth, Kansas

SCS Engineers Project Number 27220109.01 KDHE Project Code: C4-052-73682

		Samula		Laboratory An	alytical Results (m	illigrams per kild	ogram) and Test Meth	od
Boring/Sample ID	Date Sampled	Sample Depth (feet bgs)	Benzene	Toluene	Ethylbenzene	Xylenes	p- Isopropyltoluene	Naphthalene
			8260	8260	8260	8260	8260	8260
Kansas City Testing			ND 1,2	19 ¹	0.012 1	0.028 ¹		
6" Composite	10/31/91	0.5	ND	19	0.012	0.028	NA	NA
18-24" Composite	10/31/91	1.5-2	ND ^{1,2}	ND ^{1,2}	ND ^{1,2}	ND ^{1,2}	NA	NA
EPA BTA - 1999								
003	12/02/98	12-16	ND ³	ND ³	ND ³	ND ³	ND ³	NA
023	12/02/98	0-4	ND ³	ND ³	ND ³	ND ³	ND ³	NA
024	12/02/98	0-4	ND ³	ND ³	ND ³	ND ³	ND ³	NA
025	12/02/98	4-8	ND ³	ND ³	ND ³	ND ³	ND ³	NA
Environmental Work	re - 2010							
SB-1	10/10/19	26-27	ND ²	ND ²	ND ²	ND ²	ND ²	NA
SB-2	10/10/19	22-23	ND ²	ND ²	ND ²	ND ²	ND ²	NA
SB-3	10/10/19	18-19	ND ²	ND ²	ND ²	ND ²	ND ²	NA
SB-4	10/10/19	11.5-12.5	ND ²	ND ²	ND ²	ND ²	ND ²	NA
SB-5	10/10/19	4-5	ND ²	ND ²	ND ²	ND ²	ND ²	NA
30-3	10/10/19	8-10	ND ²	ND ²	ND ²	ND ²	ND ²	NA
SB-6	10/10/19	4-6	ND ²	ND ²	ND ²	ND ²	ND ²	NA
SB-7	10/10/19	24-25	ND ²	ND ²	ND ²	ND ²	ND ²	NA
SCS Engineers - 202	20							
PB-1A	09/17/20	2-4	ND	ND	ND	ND	ND	ND
(PB-1)		9.5-11	0.0111	ND	ND	ND	ND	0.0254
Soil Dup Collected with PB-1A	09/17/20	9.5-11	0.0192	ND	0.00726	0.0311	ND	0.0464
PB-2	09/17/20	1-3	ND	ND	ND	ND	ND	ND
		12-14	ND	ND	ND	ND	ND	ND
PB-3	09/18/20	1.5-3.5	0.0199	ND	ND	0.0128	ND	ND
. 2 0	00,70,20	9-11	0.0297	0.0350	0.0477	0.152	ND	0.128
PB-9	09/17/20	2-4	ND	ND	ND	ND	ND	ND
		9-11	ND	ND	ND	ND	ND	ND
		• • • • •	KDHE T	ier 2 Risk-bas	ed Screening Lev	els		
Residential Scena	ario, Soil Path	way	15.9	4,320	82	936	NE	30.5
Residential Scena	ario, Soil to G			,				
Protection Pathwa Non-Residential S	-	Dathway	0.168	51.2	65.6	809 1,410	NE NE	0.349 64.7
Non-Residential S			28.2	29,800	145	1,410	INE	04.7
Groundwater Pro			0.168	51.2	65.6	809	NE	0.659

Notes: bgs = below ground surface

NE = not established

ND = not detected above laboratory reporting limit

NA = not analyzed

1 = EPA Method 8240

VOC = volatile organic compounds

Detected laboratory concentrations are shown in **bold**

² = Less than minimum laboratory detection limits

³ = Identified in BTA report as "no significant detections for the parameters tested"

Other VOCs exceeding minimum laboratory detection limits include:

• PB-1A 9.5-11' - Isopropylbenzene (0.00489) and n-Propylbenzene (0.00911)

• Soil Dup 9.5-11' - Isopropylbenzene (0.00506), Methyl tert-butyl ether (0.00286), n-Propylbenzene (0.00796), 1,2,4-Trimethylbenzene (0.0145), and 1,2,3-Trimethylbenzene (0.00810)

• PB-3 1.5-3.5' - Chlorobenzene (0.00724), cis-1,2-Dichloroethene (0.175), trans-1,2-Dichloroethene (0.00823), Tetrachloroethene (0.0788), Trichloroethene (0.0572), 1,2,4-Trimethylbenzene (0.00866), and 1,2,3-Trimethylbenzene (0.00789)

• PB-3 9-11' - Chlorobenzene (0.181), 1,2-Dichlorobenzene (0.100), 1,4-Dichlorobenzene (0.0139), Isopropylbenzene (0.0370), p-isopropyltoluene (0.112),

n-Propylbenzene (0.0367), 1,2,4-Trimethylbenzene (0.0472), 1,2,3-Trimethylbenzene (0.0276), and 1,3,5-Trimethylbenzene (0.0137)

Table 1C - Applicable Soil Analytical Results - Previous and Current Assessments **RCRA Metals and TCLP Metals Analysis**

Former City Garage Operations 2109 South 3rd Street Leavenworth, Kansas

SCS Engineers Project Number 27220109.01 KDHE Project Code: C4-052-73682

		Sample			Laboratory Ana	lytical Results	milligrams per	kilogram) and T	est Methods		
Boring/Sample ID	Date Sampled	Depth	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	TCLP
	•	(feet bgs)	6010	6010	6010	6010	6010	7471	6010	6010	NA
Terracon - 1989		-					1				
B-1	11/24/89	2	NA	NA	NA	NA	20 1	NA	NA	NA	NA
B-2	11/24/89	2	NA	NA	NA	NA	20 1	NA	NA	NA	NA
В-3	11/24/89	2	NA	NA	NA	NA	20 1	NA	NA	NA	NA
MW-3	11/24/89	2	NA	NA							
MW-4	11/24/89	2	NA	NA							
Kansas City Testing L	_aboratory - "	1991									
6" Composite	10/31/91	0.5	NA	ND ²							
18-24" Composite	10/31/91	1.5-2	NA	ND ²							
EPA BTA - 1999											
003	12/02/98	12-16	Not Reported ³	NA							
023	12/02/98	0-4	Not Reported ³	NA							
024	12/02/98	0-4	Not Reported ³	NA							
025	12/02/98	4-8	Not Reported ³	NA							
Environmental Works	2010	l									
SB-1	10/10/19	26-27	4.0	200	ND	21.6	12.2	ND	ND	ND	NA
SB-2	10/10/19	22-23	3.0	183	ND	20.0	11.1	ND	ND	ND	NA
SB-3	10/10/19	18-19	8.2	156	ND	20.7	27.2	ND	ND	ND	NA
SB-4	10/10/19	11.5-12.5	8.1	242	0.52	19.4	23.4	ND	ND	ND	NA
SB-5	10/10/19	4-5 8-10	14.0 4.0	244 156	0.51 ND	27.2 19.5	<mark>432</mark> 25.9	0.064 ND	ND ND	ND ND	NA NA
SB-6	10/10/19	4-6	8.0	228	1.1	16.6	118	0.057	ND	ND	NA
SB-7	10/10/19	24-25	3.6	243	ND	26.3	14.0	ND	ND	ND	NA
SCS Engineers - 2020											
PB-1A	09/17/20	2-4	ND	141	ND	23.2	15.7	ND	ND	ND	NA
(PB-1)	09/11/20	9.5-11	ND	108	ND	19.2	31.2	ND	ND	ND	NA
Soil Dup Collected with PB-1A	09/17/20	9.5-11	ND	169	0.840	17.5	21.9	ND	ND	ND	NA
PB-2	09/17/20	1-3 12-14	ND ND	195 168	ND ND	24.2 20.2	21.4 18.1	ND ND	ND ND	ND ND	NA NA
PB-3	09/18/20	1.5-3.5 9-11	8.36 5.04	48.4 152	ND 0.764	17.4 21.0	24.0 4,770	ND 0.0544	ND ND	ND ND	NA NA
PB-9	09/17/20	2-4 9-11	4.01 ND	232 180	ND ND	18.9 18.2	38.2 33.3	0.0513 0.112	ND ND	ND ND	NA NA
KDHE Split Sample	09/17/20	2-4	8.1	171	ND	NA	15.4	ND	ND	ND	NA
Collected with PB-9					er 2 Risk-base	d Screening L	evels	I	I	I I	
Residential Scenar	in Soil Path	Nav	18.0			-	1	2	201	201	N/A
Residential Scenar	io, Soil to Gr	,	18.9	15,300	39	33.6	400	2	391	391	NA
Protection Pathway		Dethus	NE	NE							
Non-Residential So	,		63.2	277,000	965	111	1,000	20	10,200	10,200	NA
Non-Residential So Groundwater Prote			NE	NE							

Notes:

bgs = below ground surface NA = not analyzed

NE = not established RCRA = Resource Concervation and Recovery Act

TCLP = toxic characteristic leaching procedure

ND = not detected above laboratory reporting limit 1 = Noted in report as "detected at concentrations of 20 ppm in each of the three samples"

² = Less than minimum laboratory detection limits

³ = Identified in BTA report as "no significant detections for the parameters tested"

Concentrations above Residential Tier 2 Risk-based Screening Levels highlighted in yellow Concentrations above Non-Residential Tier 2 Risk-based Screening Levels highlighted in green

Detected laboratory concentrations are shown in bold

Table 1D - Applicable Soil Analytical Results - Previous and Current Assessments SVOCs, D,D,D-4,4' and PCBs Analysis

Former City Garage Operations 2109 South 3rd Street Leavenworth, Kansas

SCS Engineers Project Number 27220109.01 KDHE Project Code: C4-052-73682

								Labora	tory Analyt	ical Results	(milligrams per	kilogram) a	nd Test Metho	d					
Boring/Sample ID	Date Sampled	Sample Depth (feet bgs)	2,6- Dinitrotoluene	D,D,D-4,4'	Acenaphthene	Anthracene	Benzo(a) anthracene	Benzo(b) fluoranthene	Benzo(a) pyrene	Chrysene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	Benzo(g,h,i) perylene	Indeno(1,2,3-cd) pyrene	Benzo(k) fluoranthene	PCBs
			8270C	8081B	8270C	8270C	8270C	8270C	8270C	8270C	8270C	8270C	8270C	8270C	8270C	8270C	8270C	8270C	8082
Kansas City Testing		1991																	
6" Composite	10/31/91	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
18-24" Composite	10/31/91	1.5-2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPA BTA - 1999		1	4																
003	12/02/98	12-16	ND ¹	ND ¹	NA	NA	ND ¹	ND ¹	ND ¹	NA	NA	NA	NA	NA	NA	NA	NA	ND ¹	NA
023	12/02/98	0-4	ND ¹	ND ¹	NA	NA	ND ¹	ND ¹	ND ¹	NA	NA	NA	NA	NA	NA	NA	NA	ND ¹	NA
024	12/02/98	0-4	ND ¹	ND ¹	NA	NA	ND ¹	ND ¹	ND ¹	NA	NA	NA	NA	NA	NA	NA	NA	ND ¹	NA
025	12/02/98	4-8	ND ¹	ND ¹	NA	NA	ND ¹	ND ¹	ND ¹	NA	NA	NA	NA	NA	NA	NA	NA	ND ¹	NA
Environmental Works	s - 2019																		
SB-1	10/10/19	26-27	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-2	10/10/19	22-23	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-3	10/10/19	18-19	NA	NA	NA	NA	ND ²	ND ²	ND ²	NA	NA	NA	NA	NA	NA	NA	NA	ND ²	ND
SB-4	10/10/19	11.5-12.5	NA	NA	NA	NA	ND ²	ND ²	ND ²	NA	NA	NA	NA	NA	NA	NA	NA	ND ²	ND
SB-5	10/10/19	4-5	NA	NA	NA	NA	ND^2	ND^2	ND ²	NA	NA	NA	NA	NA	NA	NA	NA	ND ²	0.71 ³
		8-10	NA	NA	NA	NA	ND ²	ND ²	ND ²	NA	NA	NA	NA	NA	NA	NA	NA	ND ²	0.10 ³
SB-6	10/10/19	4-6	NA	NA	NA	NA	ND ²	ND ²	ND ²	NA	NA	NA	NA	NA	NA	NA	NA	ND ²	ND
SB-7	10/10/19	24-25	NA	NA	NA	NA	ND ²	ND ²	ND ²	NA	NA	NA	NA	NA	NA	NA	NA	ND ²	ND
SCS Engineers - 2020	n																		
PB-1A	09/17/20	2-4	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
(PB-1)	00/11/20	9.5-11	ND	ND	0.274	0.133	0.133	0.148	0.108	0.141	0.401	0.243	0.135	0.581	0.304	ND	ND	ND	NA
Soil Dup Collected with PB-1A	09/17/20	9.5-11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
PB-2	09/17/20	1-3	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
102	00/11/20	12-14	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
PB-3	09/18/20	1.5-3.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0876	0.137	0.0802	ND	ND	ND	ND
1 0-3	03/10/20	9-11	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
PB-9	09/17/20	2-4	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
	00,77720	9-11	ND	ND	ND	0.0401	0.0895	0.106	0.0822	0.0872	0.219	ND	0.0511	0.198	0.187	0.0512	0.0561	ND	ND
		L		1			K	DHE Tier 2 Ris	sk-based S	Screening L		l	<u> </u>	1	1		1	<u>.</u>	
Residential Scena			5.31	NE	3,420	18,000	10.9	10.9	1.09	1,090	2,440	2,360	30.5	NE	1,830	NE	10.9	109	50 ⁴
Residential Scena Protection Pathwa		roundwater	0.0677	NE	255	3,770	7.89	19.2	23.5	805	2,830	297	0.349	NE	2,190	NE	45.5	190	50 ⁴
Non-Residential S	cenario, Soil	Pathway	16.4	NE	30,600	221,000	33.8	33.8	3.38	3,380	35,200	25,900	64.7	NE	26,400	NE	33.8	338	50 ⁴
Non-Residential S Groundwater Prot			0.227	NE	526	8, 180	26.5	64.4	23.5	2,710	15,200	626	0.659	NE	11,900	NE	153	638	50 ⁴

Notes: bgs = below ground surface

NA = not analyzed

ND = not detected above laboratory reporting limit

NE = not established VOCs = volatile organic compounds PCBs = polychlorinated biphenyls D,D,D-4,4' = dichlorodiphenyldichloroethane

SVOCs = semi-volatile organic compounds Detected laboratory concentrations are shown in **bold**

1 = Identified in BTA report as "no significant detections for the parameters tested"

² = Less than minimum laboratory detection limits

³ = Detected compound was Aroclor 1254

⁴ = Action levels of 50 mg/kg for PCBs are set in the Toxic Substance Control Act (TSCA) guidelines

Table 2A - Applicable Groundwater Analytical Results - Previous and Current AssessmentsVOC Analysis

Former City Garage Operations 2109 South 3rd Street Leavenworth, Kansas

SCS Engineers Project Number 27220109.01 KDHE Project Code: C4-052-73682

		-	T	1	I	I		1	1	Laboratory A	nalytical Res	ults (milligrams	per liter) and Te	st Methods		Γ			Γ	
Probe/Well ID	Date Sampled	Benzene	Toluene	Ethylbenzene	Total Xylenes	VOCs Survey Search	Methylene Chloride	p- Isopropyltoluene	n- Butvibenzene	sec- Butylbenzene	Isopropyl- benzene	Naphthalene	n- Propylbenzene	1,2,4- Trimethylbenzene	1,2,3- Trimethylbenzene	1,4- Dichlorobenzene	Chlorobenzene	Trichlorofluro- methane	1,2- Dichlorobenzene	Dichlorodifluro- methane
		8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260
Terracon - 1989 MW-1	11/24/89	ND	ND	NA	ND	NA	NA	NA	NA	NA	NA	NA	ΝΔ	NA	NA	NA	NA	NA	NA	NA
			ND	NA						NA	NA	NA	NA							
MW-2	11/24/89	ND	ND	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-3	11/24/89	ND	ND	NA	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-4	11/24/89	ND	ND	NA	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-5	11/24/89	ND	ND	NA	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-6	11/24/89	NA	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
EPA BTA - 1999																				
100	12/02/98	0.0069	ND	ND	ND	NA	0.37	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
105	12/02/98	ND	ND	ND	ND	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Environmental Work	s - 2019																			
MW-1	10/10/19	ND	ND	ND	ND	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-2	10/10/19	ND	ND	ND	ND	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-3	10/10/19	ND	ND	ND	ND	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-5	10/10/19	ND	ND	ND	ND	NA	ND	0.0016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-7	10/10/19	ND	ND	ND	ND	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SCS Engineers - 202	:0																			
PB-1A (PB-1)	09/21/20	0.591	0.00534	0.00296	0.0176	NA	ND	ND	0.0101	0.00853	0.0448	0.164	0.0741	0.00216	0.00471	ND	ND	ND	ND	ND
Dup Collected with PB-1A	09/21/20	0.485	0.00526	0.00301	0.0172	NA	ND	ND	0.00869	0.00815	0.0456	0.149	0.0693	0.00183	0.00416	ND	ND	ND	ND	ND
PB-2	09/21/20	ND	ND	ND	ND	NA	ND	0.00118	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PB-3	09/21/20	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00153	ND	ND	ND	ND
PB-4	09/21/20	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PB-5	09/21/20	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PB-6	09/21/20	ND	ND	ND	ND	NA	ND	ND	ND	ND	0.0017	0.00982	ND	ND	ND	ND	0.00169	0.00593	ND	ND
PB-7	09/21/20	0.00547	ND	ND	ND	NA	ND	0.00648	ND	ND	0.00153	ND	ND	ND	ND	0.00203	0.00348	ND	0.0018	0.0301
PB-8	09/21/20	0.00649	ND	0.00183	0.00326	NA	ND	ND	ND	0.00118	0.00328	0.0056	0.00281	0.00274	0.00154	0.00114	0.00242	ND	ND	ND
PB-9	09/21/20	ND	ND	ND	ND	NA	ND	ND	0.128	0.0823	ND	ND	0.0947	ND	ND	ND	ND	ND	ND	ND
PB-10	09/21/20	0.00203	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PB-11	09/21/20	0.00444	ND	ND	ND	NA	ND	ND	ND	ND	0.00258	ND	0.0024	ND	ND	ND	ND	ND	ND	ND
Residential Scena	rio. Groundwater	-							KDH	E Tier 2 Risk-b	ased Scree	ning Levels								
Pathway		0.005	1	0.7	10	NE	0.005	NE	0.169	0.305	NE	0.00111	0.66	0.00844	NE	0.075	0.1	1.09	0.6	0.366
Non-Residential S Groundwater Path		0.005	1	0.7	10	NE	0.005	NE	0.392	0.745	NE	0.00211	1.91	0.0174	NE	0.075	0.1	1.9	0.6	0.567
Notes:				•							-			•			•			

Notes: VOC = volatile organic compounds ND = not detected above laboratory reporting limit NA = not analyzed

NE = not established Detected laboratory concentrations are shown in **bold**

Concentrations above Non-Residential Tier 2 Risk-based Screening Levels are highlighted in green

Table 2B - Applicable Groundwater Analytical Results - Previous and Current Assessments TPH, SVOC and D,D,D-4,4' Analysis

Former City Garage Operations 2109 South 3rd Street Leavenworth, Kansas

SCS Engineers Project Number 27220109.01 KDHE Project Code: C4-052-73682

					La	aboratory Ar	alytical Results	(milligrams per	liter) and Test	Methods			
Probe/Well ID	Date Sampled	TPH-LRH	TPH-MRH	TPH-HRH	2,6- Dinitrotoluene	D,D,D-4,4'	SVOCs Survey Search	Pentachloro- phenol	Naphthalene	Acenaphthene	Fluorene	Phenanthrene	Bis(2-ethylhexyl)- phthalate
		KS LRH	KS MRH	KS HRH	8270C	8081B	Not Identified	8270C	8270C	8270C	8270C	8270C	8270C
Terracon - 1989 MW-1	11/24/89	NA	NA	NA	ND ¹	NA	NA	ND ¹	NA	NA	NA	NA	NA
MW-2	11/24/89	NA	NA	NA	ND ¹	NA	NA	ND ¹	NA	NA	NA	NA	NA
MW-3	11/24/89	NA	NA	NA	ND ¹	NA	ND ¹	ND ¹	NA	NA	NA	NA	NA
MW-4	11/24/89	NA	NA	NA	ND1	NA	ND ¹	ND ¹	NA	NA	NA	NA	NA
MW-5	11/24/89	NA	NA	NA	ND ¹	NA	ND ¹	ND ¹	NA	NA	NA	NA	NA
MW-6	11/24/89	NA	NA	NA	ND ¹	NA	ND ¹	ND ¹	NA	NA	NA	NA	NA
EPA BTA - 1999													
100	12/02/98	NA	NA	NA	ND ²	0.003	NA	0.0011	NA	NA	NA	NA	NA
105	12/02/98	NA	NA	NA	ND ²	0.0039	NA	ND	NA	NA	NA	NA	NA
Environmental Works													
MW-1	10/10/19	ND	0.15	0.95	ND	NA	NA	ND	NA	NA	NA	NA	NA
MW-2	10/10/19	ND	0.13	0.77	ND	NA	NA	ND	NA	NA	NA	NA	NA
MW-3	10/10/19	ND	0.14	0.80	ND	NA	NA	ND	NA	NA	NA	NA	NA
MW-5	10/10/19	ND	0.33	3.1	ND	NA	NA	ND	NA	NA	NA	NA	NA
MW-7	10/10/19	ND	0.16	0.78	0.0182	NA	NA	ND	NA	NA	NA	NA	NA
SCS Engineers - 2020 PB-1A	09/21/20	1.41	1.85	0.44	ND	ND	NA	ND	0.0723	ND	ND	ND	ND
(PB-1) Dup	09/21/20	1.43	1.82	0.344	ND	ND	NA	ND	0.111	0.00103	ND	ND	0.00697
Collected with PB-1A PB-2	09/21/20	ND	0.122	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
PB-3	09/21/20	ND	0.249	0.14	ND	ND	NA	ND	0.0028	ND	ND	ND	ND
PB-4	09/21/20	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND
PB-5	09/21/20	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND
PB-6	09/21/20	ND	0.276	0.265	ND	NA	NA	ND	0.00712	ND	ND	ND	ND
PB-7	09/21/20	ND	1.97	2.39	ND	NA	NA	ND	ND	ND	ND	ND	ND
PB-8	09/21/20	ND	0.472	0.367	ND	NA	NA	ND	0.0042	ND	ND	ND	ND
PB-9	09/21/20	ND	247	94.6	ND	NA	NA	ND	ND	0.0663	0.062	0.199	ND
PB-10	09/21/20	ND	0.221	0.695	ND	NA	NA	ND	ND	ND	ND	ND	ND
PB-11	09/21/20	ND	0.286	0.817	ND	NA NA	NA	ND	ND	ND	ND	ND	0.00607
Posidontial Second	rio			1	KUHE H	er 2 RISK-D	ased Screening	Leveis	1	1	1	1	
Residential Scena Groundwater Path Non-Residential S	nway	0.35	0.15	1	0.000557	NE	NE	0.001	0.00111	0.253	0.162	NE	0.006
Groundwater Path		0.95	0.4	2.5	0.00187	NE	NE	0.001	0.00211	0.521	0.341	NE	0.006

Notes:

 Notes:
 Detected laboratory concentrations are shown in **bold** MRH = mid range hydrocarbons
 ND = not detected above laboratory reporting limit

 TPH = total petroleum hydrocarbons
 HRH = high range hydrocarbons
 NA = not applicable

 SVOC = semi-volatile organic compounds
 KS = Kansas
 NE = not established

 D D D D d 4 = dishbrand/inhomed/i TPH = total petroleum hydrocarbons SVOC = semi-volatile organic compounds

 SVUC = semi-volatile organic compounds
 NS = Aansas
 NL = not:

 LRH = low range hydrocarbons
 D,D,D.4/4 = dichlorod/phenyldichloroethane

 Concentrations above Tier 2 Risk-based Screening Levels (residential scenario) are highlighted in yellow

 Concentrations above Tier 2 Risk-based Screening Levels (non-residential scenario) are highlighted in green

 ¹ = Assumed to be below the minimum laboratory reporting limits for the SVOC method used in 1999

Table 2C - Applicable Groundwater Analytical Results - Previous and Current Assessments RCRA Metals Analysis

Former City Garage Operations 2109 South 3rd Street Leavenworth, Kansas

SCS Engineers Project Number 27220109.01 KDHE Project Code: C4-052-73682

					lytical Results (r		- · ·		
Probe/Well ID	Date Sampled	Arsenic 6010	Barium 6010	Cadmium 6010	Chromium 6010	Lead 6010	Mercury 7471	Selenium 6010	Silver 6010
erracon - 1989		0010	0010	0010	0010	0010	14/1	0010	0010
MW-1	11/24/89	NA	NA	NA	NA	ND	NA	NA	NA
MW-2	11/24/89	NA	NA	NA	NA	ND	NA	NA	NA
MW-3	11/24/89	NA	NA	NA	NA	ND	NA	NA	NA
MW-4	11/24/89	0.06	NA	0.07	0.17	3.0	ND	ND	ND
MW-5	11/24/89	NA	NA	NA	NA	ND	NA	NA	NA
MW-6	11/24/89	ND	NA	ND	ND	ND	ND	ND	ND
PA BTA - 1999									
100	12/02/98	0.187	8.38	0.237	0.272	4.89	0.0048	NA	NA
105	12/02/98	0.0281	0.153	ND	0.006	0.453	0.000344	NA	NA
nvironmental Works	s - 2019								
MW-1	10/10/19	0.015	0.22	ND	ND	ND	ND	ND	ND
MW-2	10/10/19	0.015	0.19	ND	ND	ND	ND	ND	ND
MW-3	10/10/19	ND	0.13	ND	ND	ND	ND	ND	ND
MW-5	10/10/19	ND	0.40	ND	ND	ND	ND	ND	ND
MW-7	10/10/19	ND	0.035	ND	ND	ND	ND	ND	ND
CS Engineers - 2020									
PB-1A (PB-1)	09/21/20	ND	0.779	ND	ND	ND	ND	ND	ND
Dup Collected with PB-1A	09/21/20	ND	0.773	ND	ND	ND	ND	0.0107	ND
PB-2	09/21/20	NA	NA	NA	NA	NA	NA	NA	NA
PB-3	09/21/20	ND	0.722	ND	ND	ND	ND	ND	ND
PB-4	09/21/20	NA	NA	NA	NA	NA	NA	NA	NA
PB-5	09/21/20	0.0486	0.536	ND	ND	ND	ND	ND	ND
PB-6	09/21/20	ND	0.796	ND	ND	ND	ND	ND	ND
PB-7	09/21/20	NA	NA	NA	NA	NA	NA	NA	NA
PB-8	09/21/20	ND	5.19	ND	ND	ND	ND	ND	ND
PB-9	09/21/20	NA	NA	NA	NA	NA	NA	NA	NA
PB-10	09/21/20	ND	0.668	ND	ND	0.0261	ND	ND	ND
KDHE Split Sample Collected with PB-10	09/21/20	ND	0.835	ND	ND	ND	ND	ND	ND
PB-11	09/21/20	NA	NA	NA	NA	NA	NA	NA	NA
			KDHE TI	er 2 Risk-bas	ed Screening	Levels	•	•	
Residential Scenar Pathway	rio, Groundwater	0.01	2	0.005	0.1	0.015	0.002	0.05	0.0779
Non-Residential So Groundwater Path		0.01	2	0.005	0.1	0.015	0.002	0.05	0.508

Notes:

Detected laboratory concentrations are shown in **bold**

NA = not applicable

RCRA = Resource Concervation and Recovery Act ND = not detected above laboratory reporting limit

Concentrations above Tier 2 Risk-based Screening Levels (non-residential scenario) are highlighted in green

Table 3 - Previous Soil Vapor Analytical Results VOCs Analysis

Former City Garage Operations 2109 South 3rd Street Leavenworth, Kansas

SCS Engineers Project Number 27220109.01 KDHE Project Code: C4-052-73682

												La	boratory Ana	alytical Res	ults (micro	grams per	r cubic mete	er) and Te	st Method					
Sample ID	Date Sampled	Acetone	Benzene	Bromodichloromethane	Carbon Disulfide	Chloroform	Chloromethane	Cyclohexane	Ethyl Acetate	Ethylbenzene	4- Ethyltoluene	Freon 11	Freon 114	Freon 12	Heptane	Hexane	Isopropyl alcohol	MEK	Methylene chloride	Naphthalene	Styrene	PCE	Toluene	тс
		TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-
Environmental Wo	rks - 2019																							/
SVW-1	10/11/19	53	7.2	2.5	32	49	ND	11	ND	7.2	1.5	3.3	68	6.8	23	16	5.0	11J	0.80	0.89	1.2	0.68J	14	N
SVW-2	10/11/19	43	12	0.80J	15	36	0.76	19	1.0	3.2	ND	1.5	ND	2.5	11J	19	4.0	8.8J	0.59	1.3	ND	ND	12	1.:
SVW-3	10/11/19	20	3.2	3.7	7.5J	120	ND	11	0.76J	1.5	ND	2.6	ND	2.7	11	8.5J	4.2	5.7	0.42J	1.0	ND	0.95J	5.2	NI
		•												EPA VI	SL									
Target Exterior Residential	Soil Gas -	1.1E+06	120	25	2.4E+04	4.1E+01	3.1E+03	2.1E+05	2.4E+03	374	NE	NE	NE	3.5E+03	1.4E+04	2.4E+04	7.0E+03	1.7E+05	2.1E+04	28	3.5E+04	1.4E+03	1.7E+05	7.0E
Target Exterior Commercial	Soil Gas -	4.5E+06	524	110	1.0E+05	1.8E+02	1.3E+04	8.8E+05	1.0E+04	1,640	NE	NE	NE	1.5E+04	5.8E+04	1.0E+05	2.9E+04	7.3E+05	8.8E+04	120	1.5E+05	5.8E+03	7.3E+05	2.9E

VOCS = volatile organic compounds MEK = Methyl Ethyl Ketone PCE = Tetrachloroethylene

EPA VISL = U.S. Environmental Protection Agency Vapor Intrusion Screening Level

Samples collected by Environmental Works, Inc. in October 2019

TCE = Trichloroethylen J = analyte detected below quantitation limit ND = not detected above laboratory reporting limit

NE = not established Detected laboratory concentrations are shown in bold

Concentrations above EPA VISL Target Exterior Soil Gas concentrations for residential land use are highlighted in yellow

TCE	1,1,1-	1,2,4-	1,3,5-	2,2,4-	m&p-	o-Xylene
IOL	Trichloroethane	Trimethylbenzene	Trimethylbenzene	Trimethylpentane	Xylene	0-Aylene
TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15
ND	ND	3.8	2.7	1.9	6.5	2.6
1.3	ND	1.9	0.93	3.6	5.0	1.7
ND	12	2.5	1.2	4.3	3.9	1.4
7.0E+01	1.7E+05	2.1E+03	2.1E+03	NE	7.0E+03	3.5E+03
2.9E+02	7.3E+05	8.8E+03	8.8E+03	NE	2.9E+04	1.5E+04

Table 4 - Current Indoor Air Analytical Results VOC Analysis

Former City Garage Operations 2109 South 3rd Street Leavenworth, Kansas

SCS Engineers Project Number 27220109.01 KDHE Project Code: C4-052-73682

									Laborato	ry Analytica	l Results (n	nicrograms per cu	bic meter)	and Test Method					
Sample ID	Date Sampled	Benzene	Toluene	Ethylbenzene	m&p- Xylene	o-Xylene	PCE	TCE	cis-1,2- DCE	trans-1,2- DCE	Acetone	Chloromethane	Ethanol	Trichlorofluoro- methane	Dichlorodifluoro- methane	Methylene chloride	Naphthalene	2-Propanol	1,2,4- Trimethylbenzene
		TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15	TO-15
SCS Engineers - 2020)																		
AS-1	09/21/20	ND	0.915	ND	ND	ND	ND	ND	ND	ND	7.13	0.516	95.8	ND	1.14	1.05	ND	ND	ND
Dup Collected with AS-1	09/21/20	ND	1.98	ND	ND	ND	1.58	ND	ND	ND	15.8	1.27	224	1.40	2.85	ND	ND	5.85	ND
AS-2	09/21/20	ND	1.74	ND	ND	ND	5.11	ND	ND	ND	21.6	1.32	78.4	1.46	2.80	ND	ND	55.6	ND
AS-AMB	09/21/20	ND	1.86	ND	ND	ND	ND	ND	ND	ND	13.1	1.21	8.31	1.36	2.72	ND	ND	4.25	ND
									KDHE Tie	er 2 Risk-ba	ased Scree	ening Levels		•					
Residential Scena Air Pathway	rio, Indoor	3.12	5,210	9.73	104	104	41.7	2.09	7.3	62.6	32,300	93.9	NE	730	209	626	0.716	NE	7.3
Notes:		-																	

VOC = volatile organic compounds

MEK = Methyl Ethyl Ketone

PCE = Tetrachloroethylene

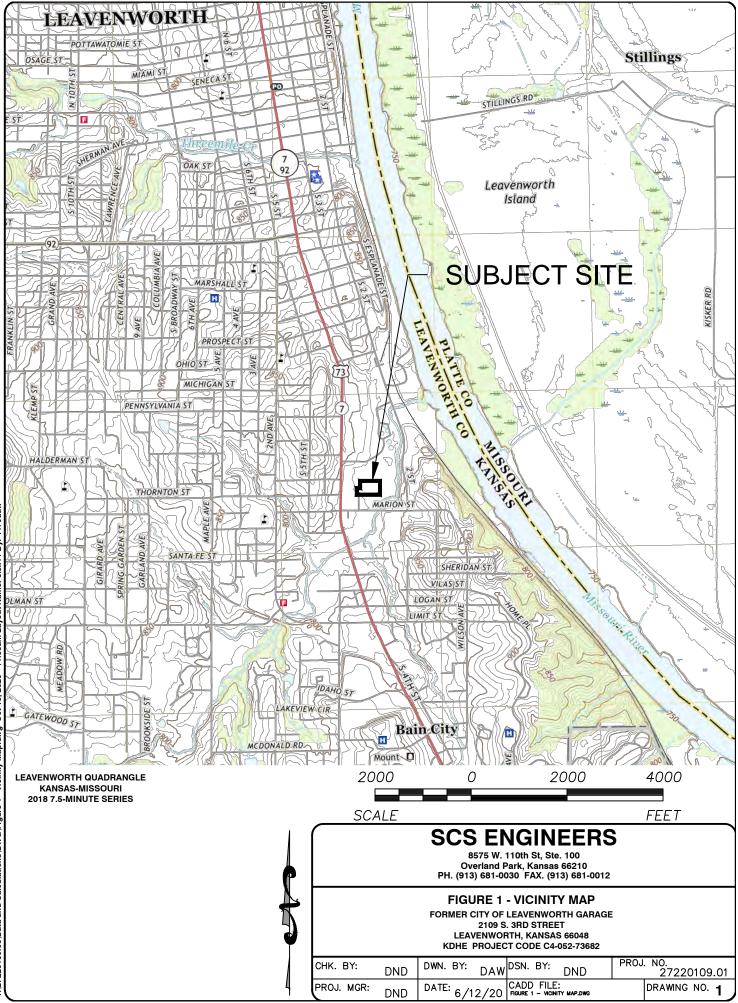
TCE = Trichloroethylene DCE = Dichloroethene

NE = not established

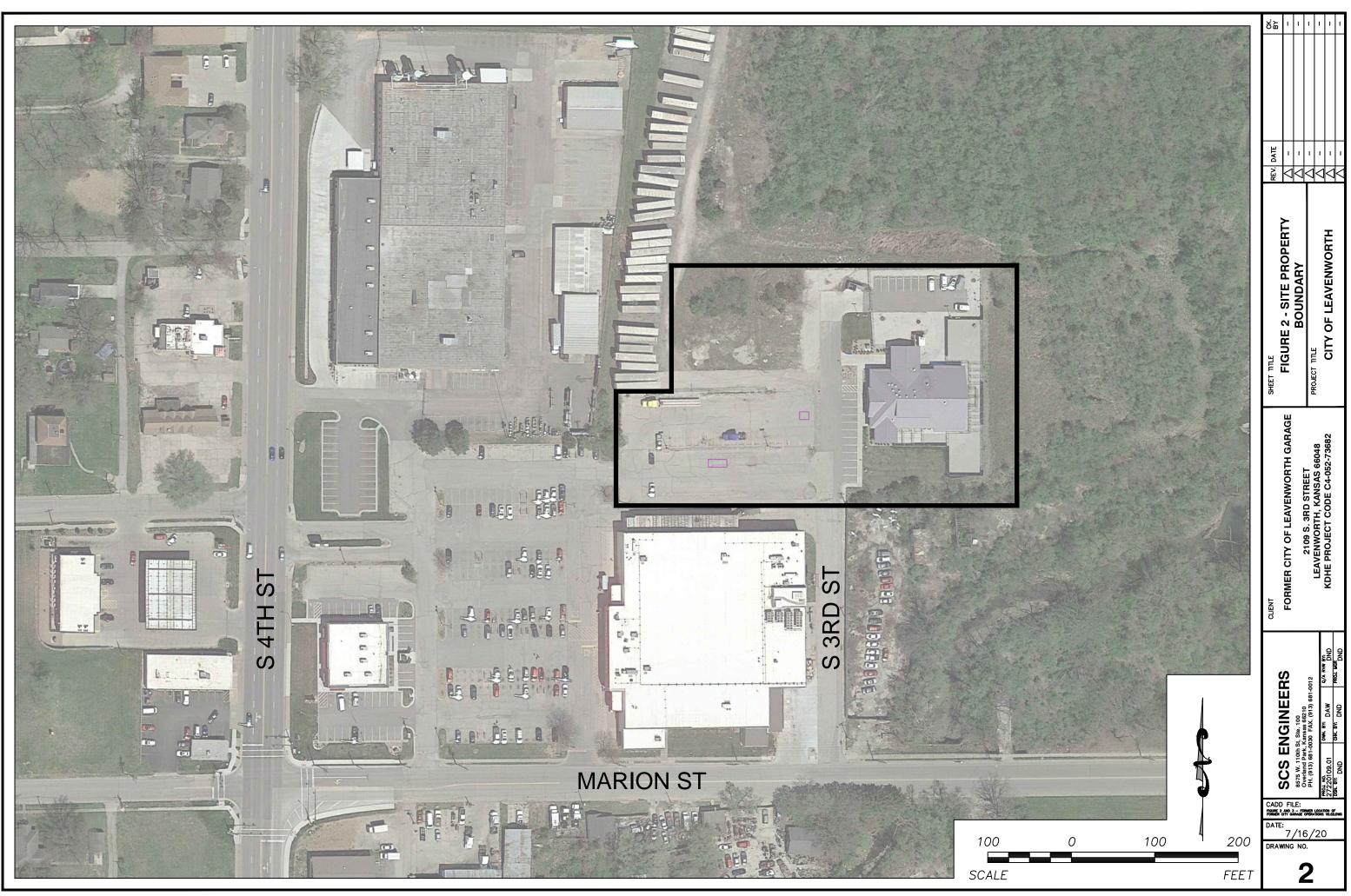
DCE = Dichloroethene ND = not detected above laboratory reporting limit Detected laboratory concentrations are shown in **bold**

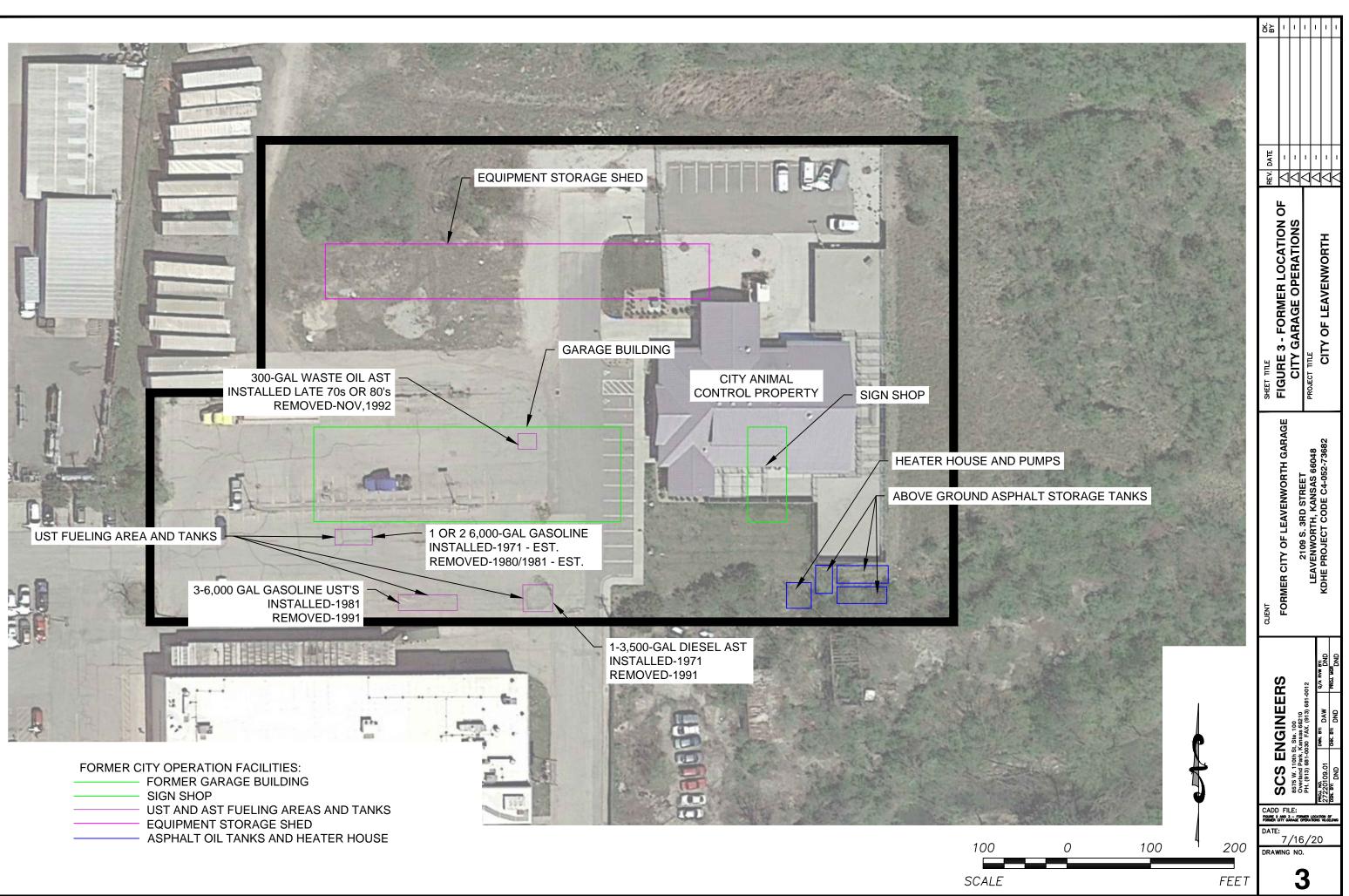
Table 5 - Groundwater Elevation Data

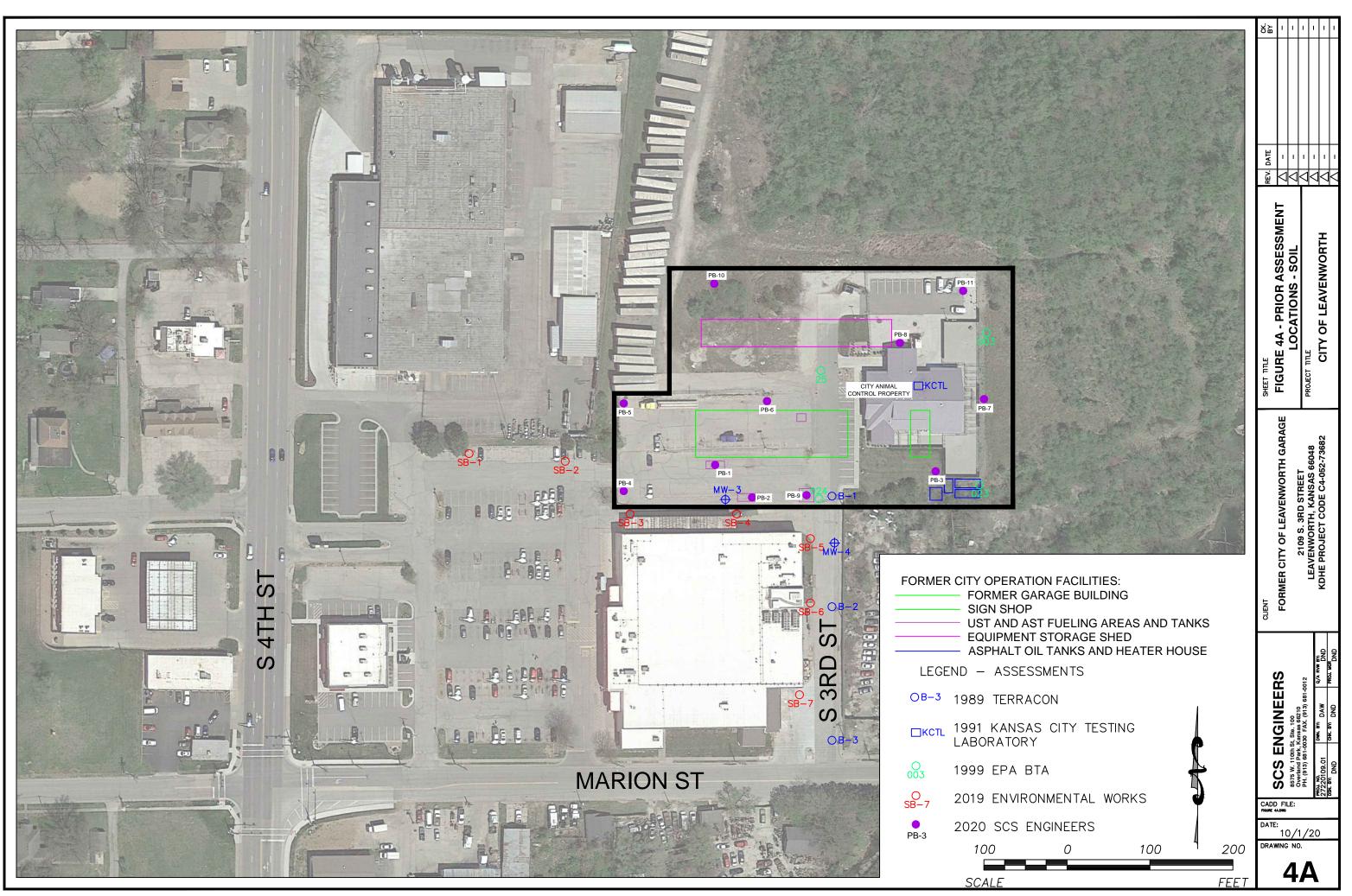
Former City Garage Operations 2109 South 3rd Street Leavenworth, Kansas

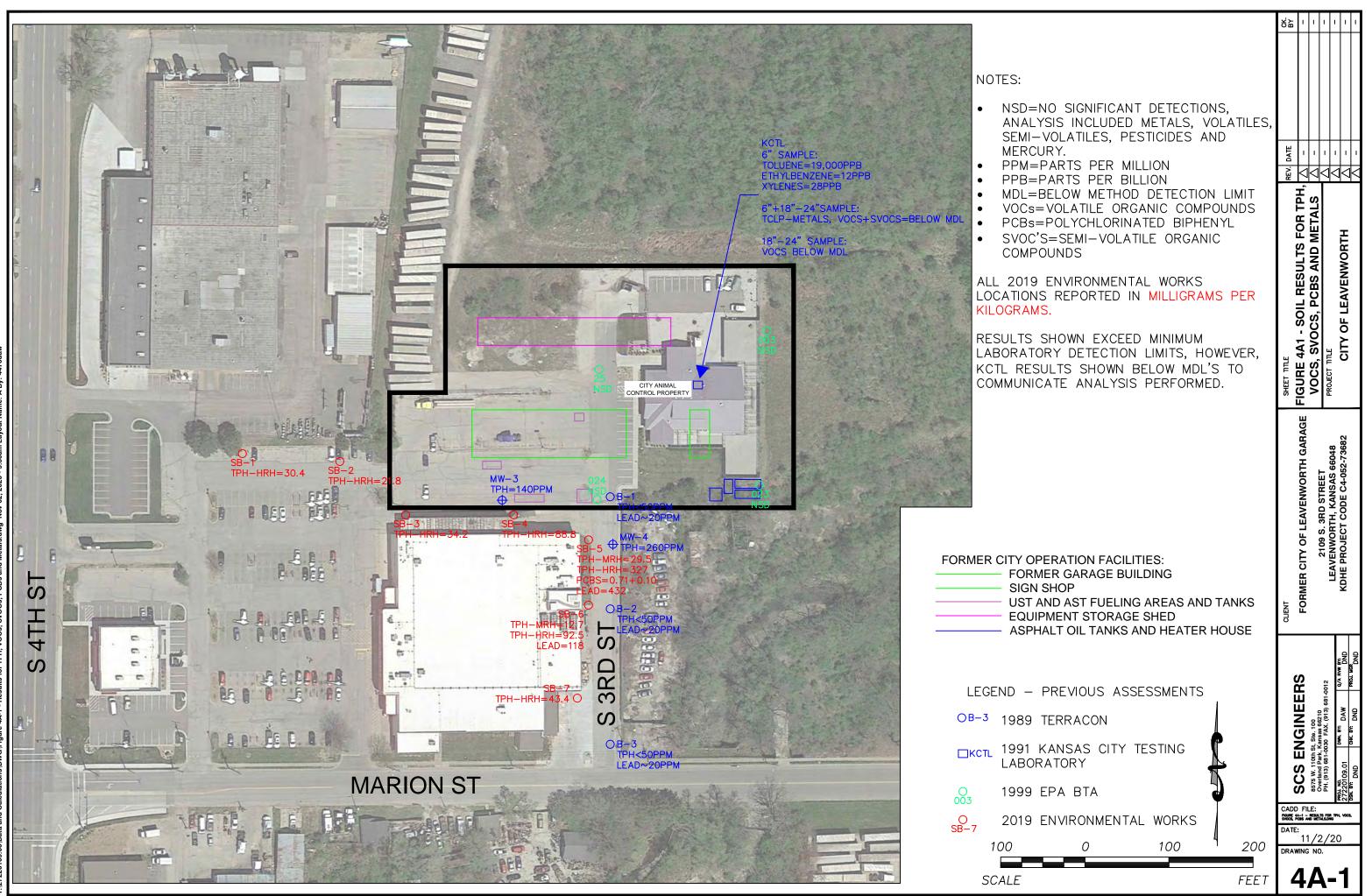

SCS Engineers Project Number 27220109.01 KDHE Project Code: C4-052-73682

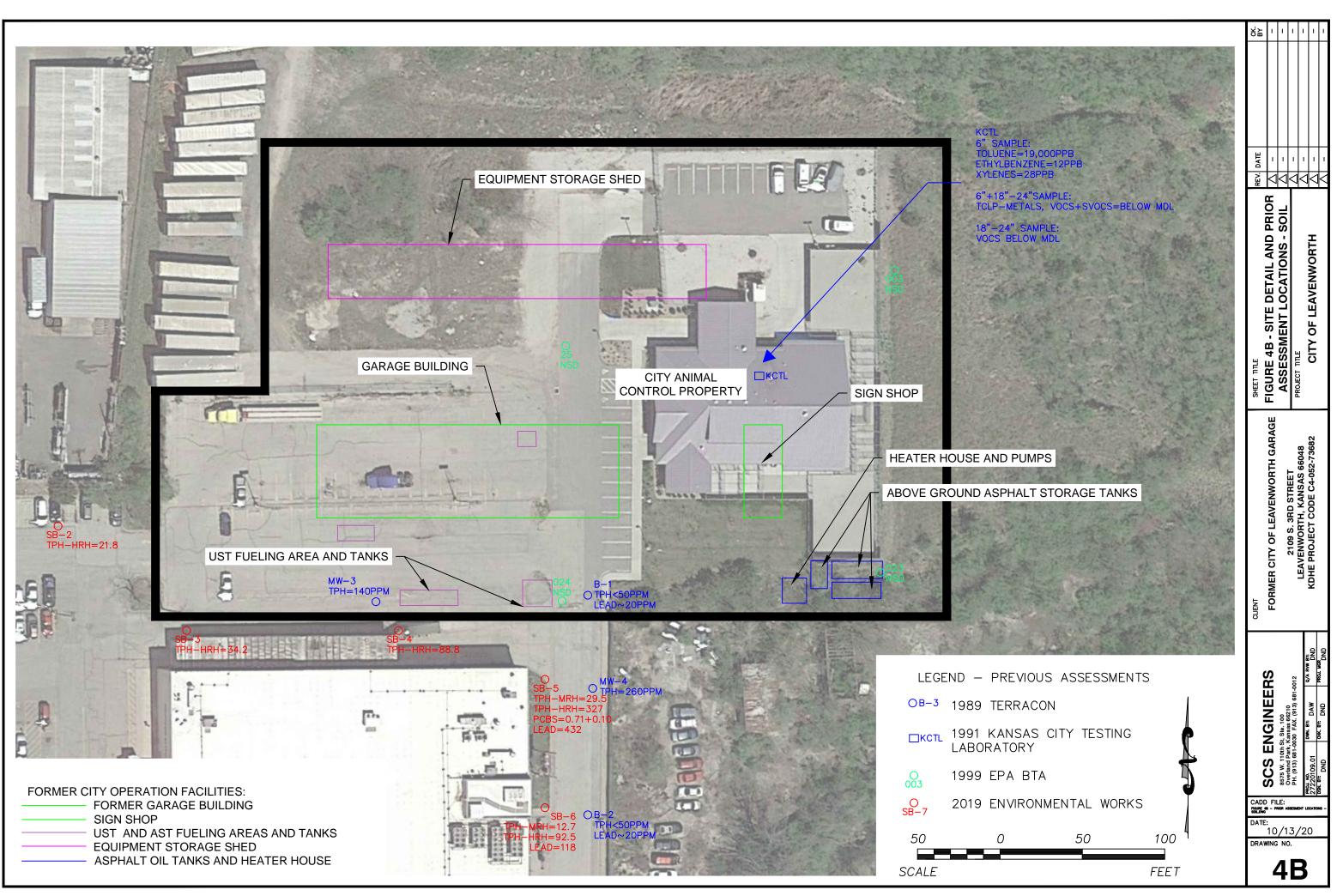
Boring/ Piezometer ID	Date Measured	Top of Casing Elevation (feet)	Total Depth of Piezometer (feet bTOC)	Measured Depth to Groundwater (feet bTOC)	Groundwater Elevation (feet)
PB-1A (PB-1)	09/21/20	778.19	18.12	6.55	771.64
PB-2	09/21/20	777.38	19.03	6.39	770.99
PB-3	09/21/20	778.39	19.58	9.45	768.94
PB-4	09/21/20	779.16	20.13	17.74	761.42
PB-5	09/21/20	779.63	19.47	17.35	762.28
PB-6	09/21/20	777.52	14.88	5.92	771.60
PB-7	09/21/20	778.71	19.98	10.03	768.68
PB-8	09/21/20	779.39	19.08	9.23	770.16
PB-9	09/21/20	777.57	19.02	10.49	767.08
PB-10	09/21/20	777.61	19.63	5.84	771.77
PB-11	09/21/20	777.05	13.85	8.14	768.91

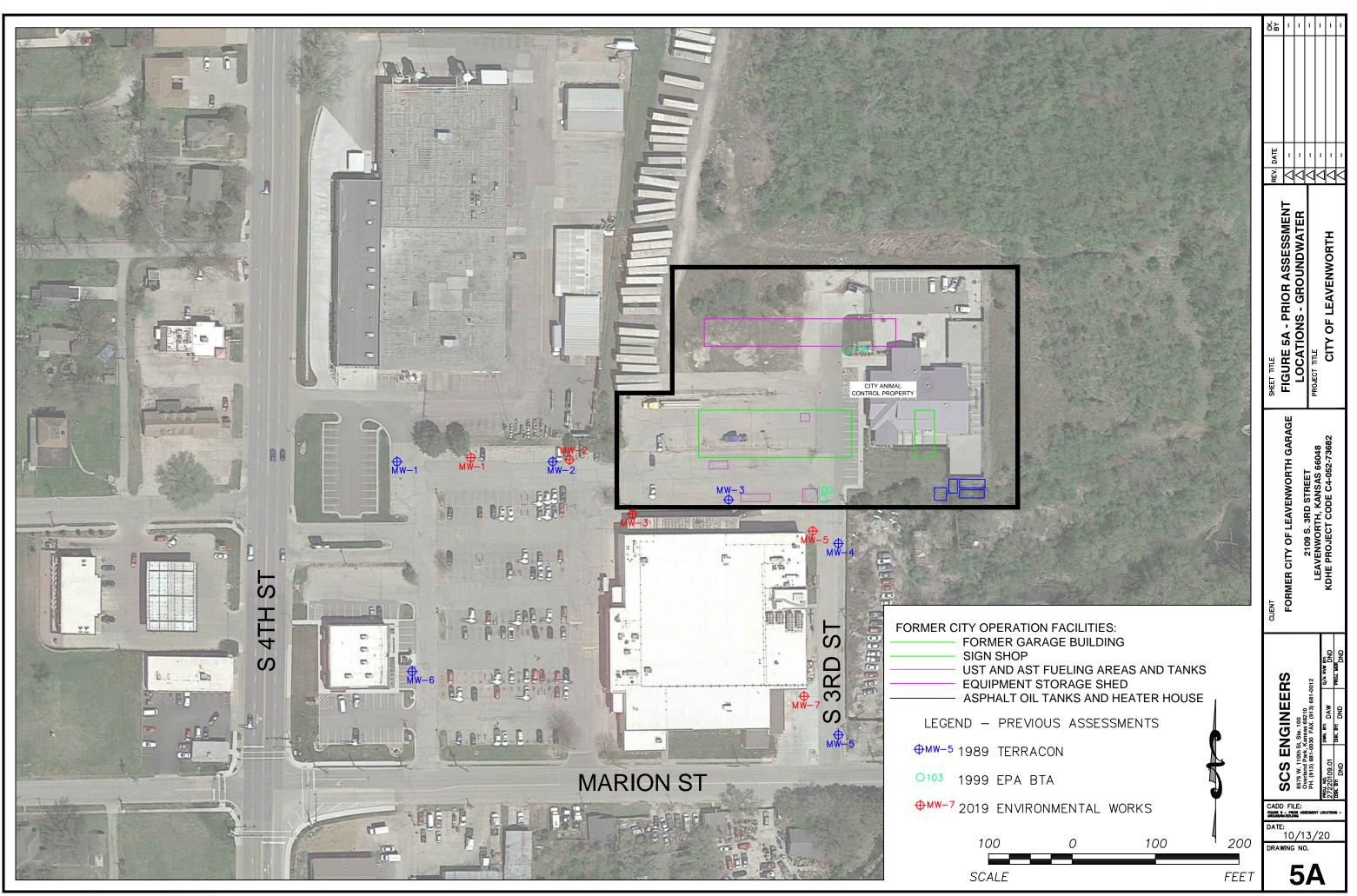

bTOC = below the top of the well casing

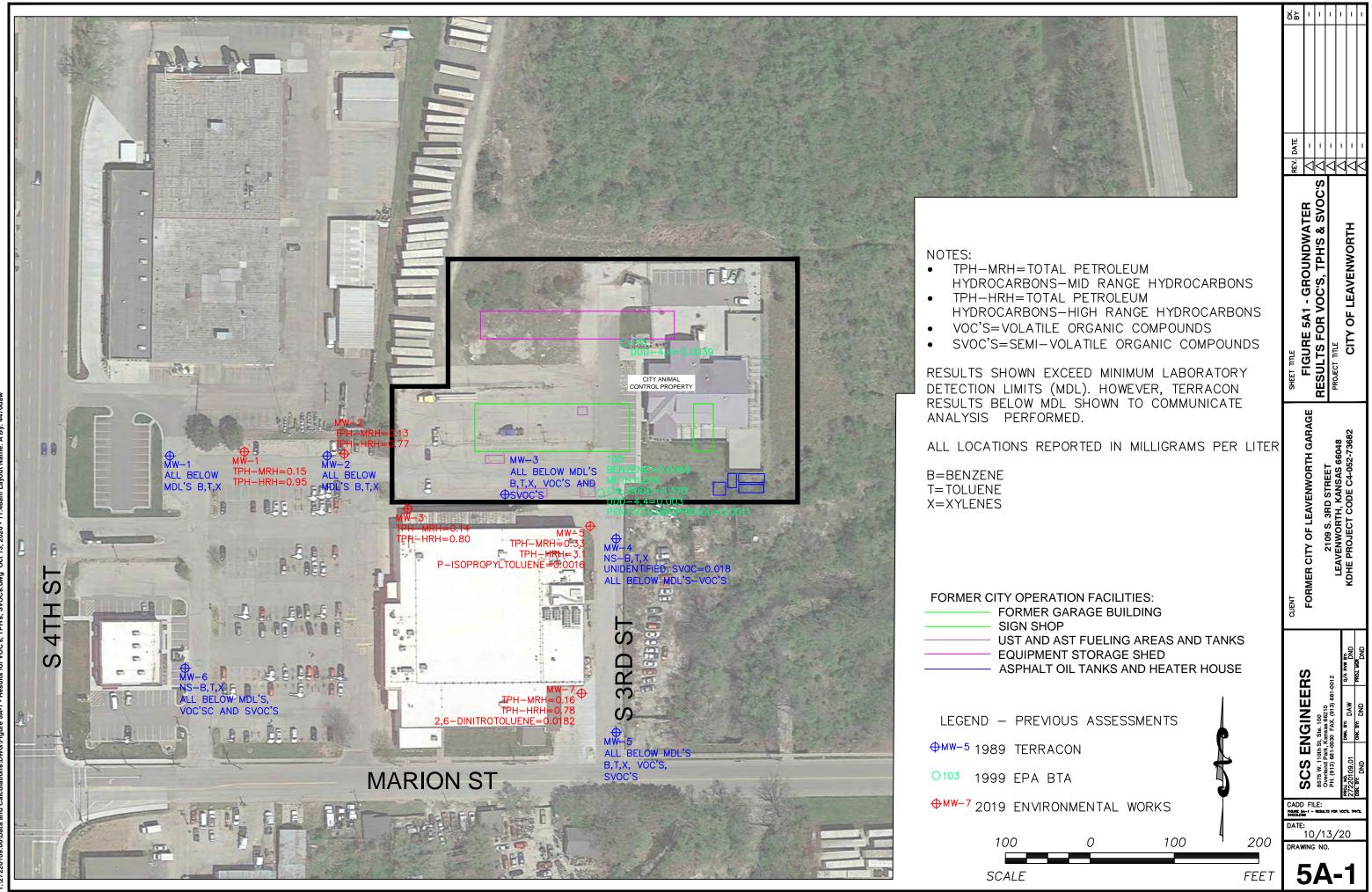

Top of casing elevations provided by Wilson, Missouri-Licensed Surveyor (September 21, 2020)

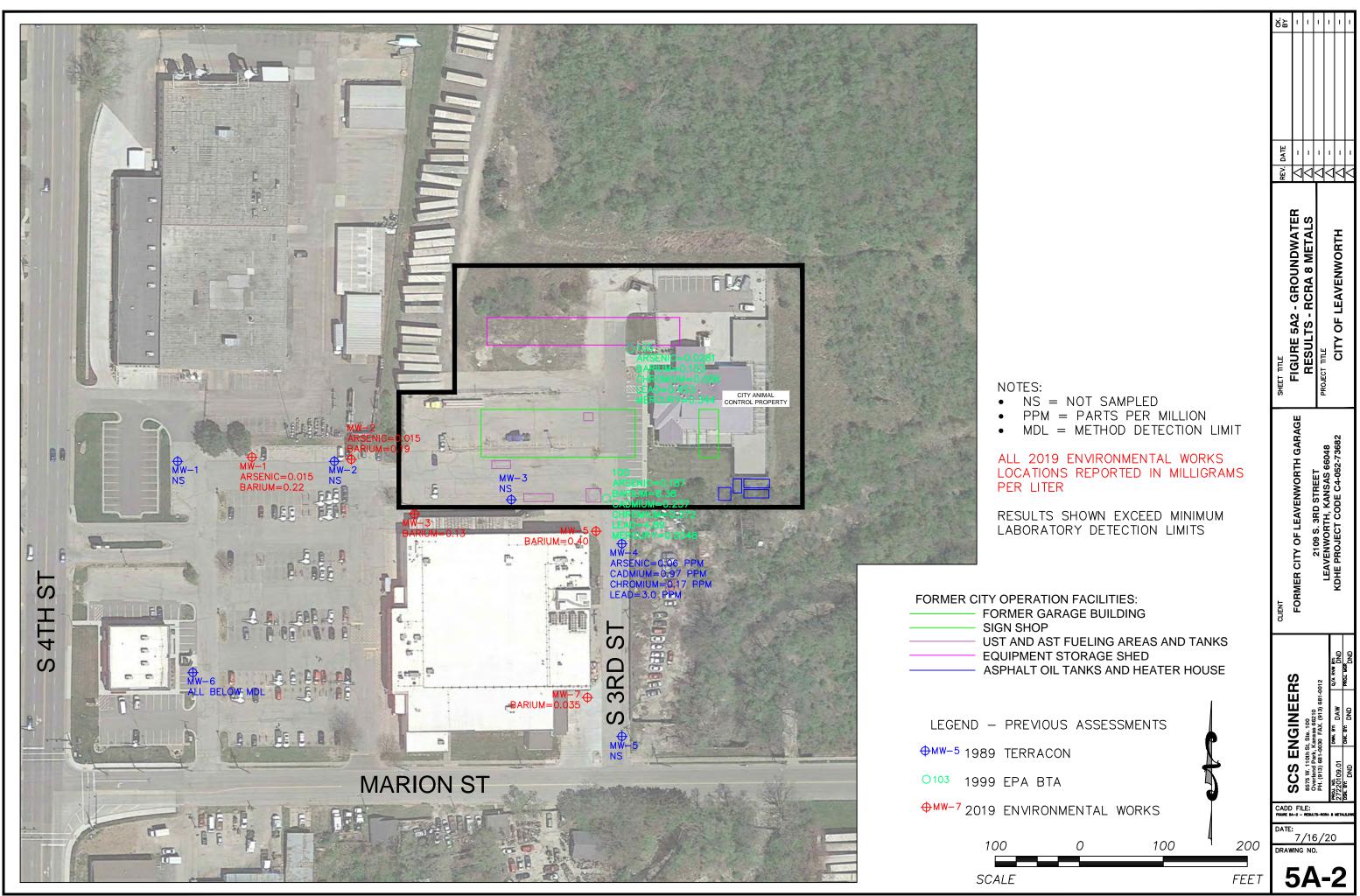

10.0 FIGURES

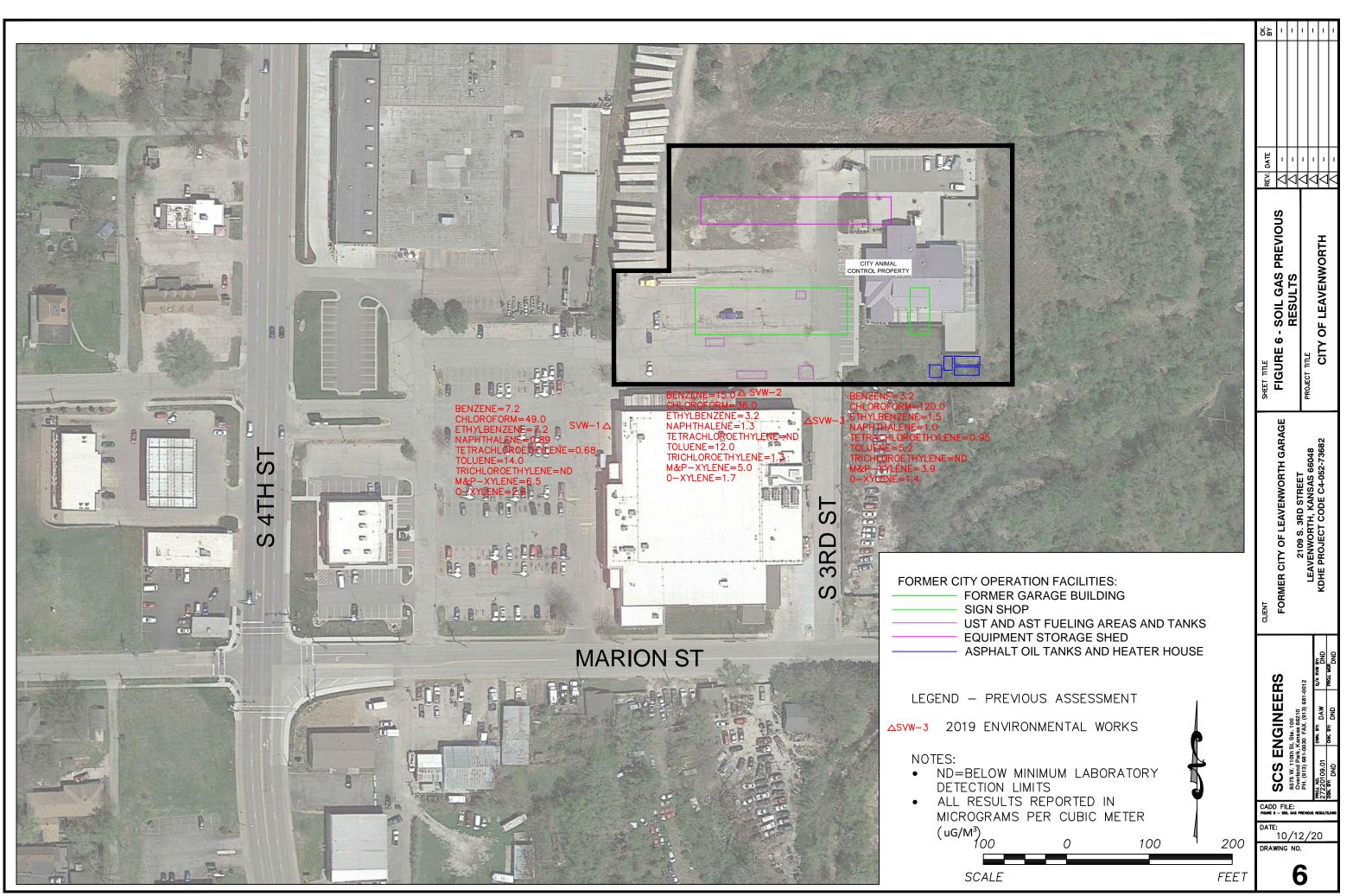


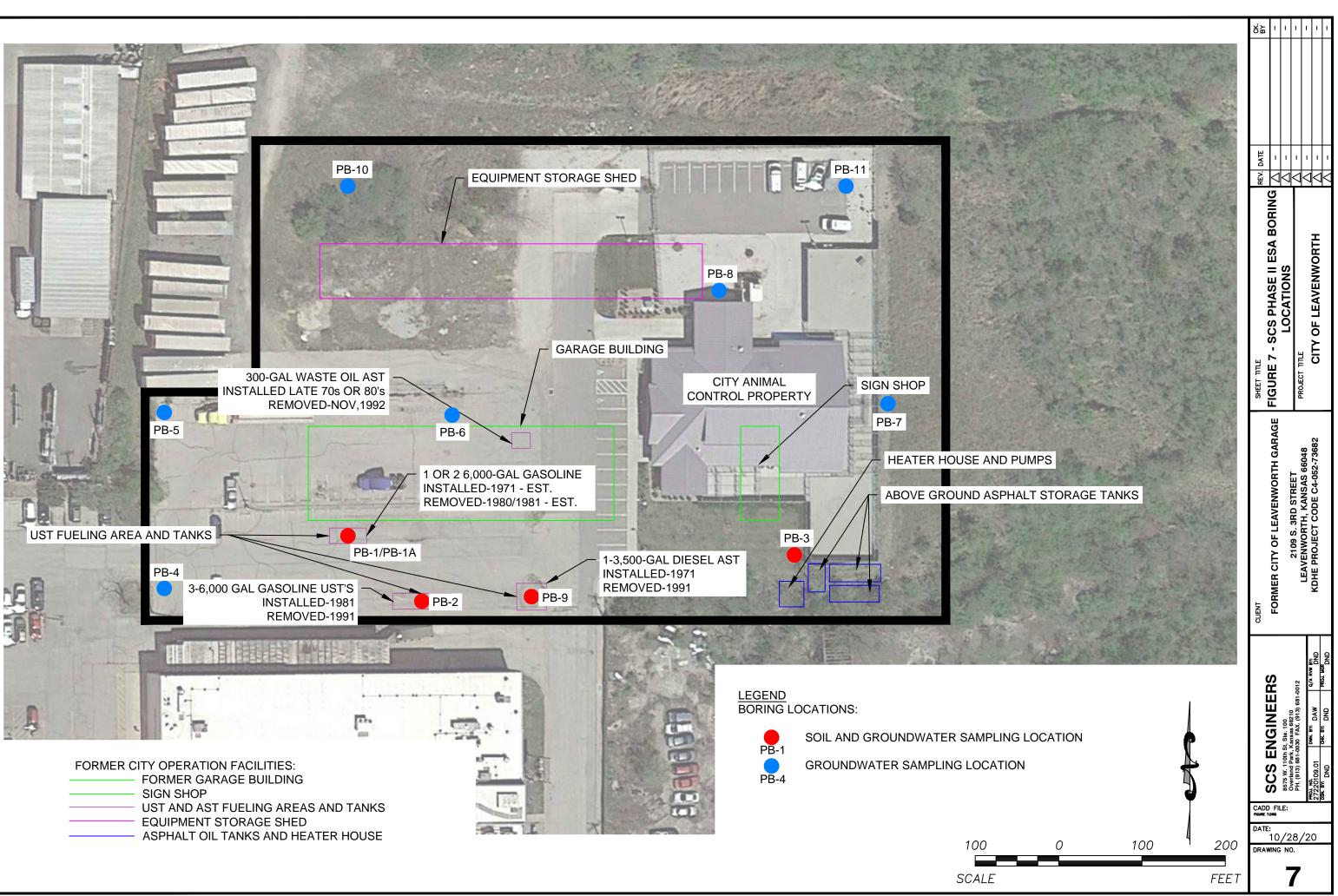

T:\27220109.00\Data and Calculations\DWG\Figure 1 - Vicinity Map.dwg Oct 13, 2020 - 11:38am Layout Name: 8.5x11 By: 4470daw

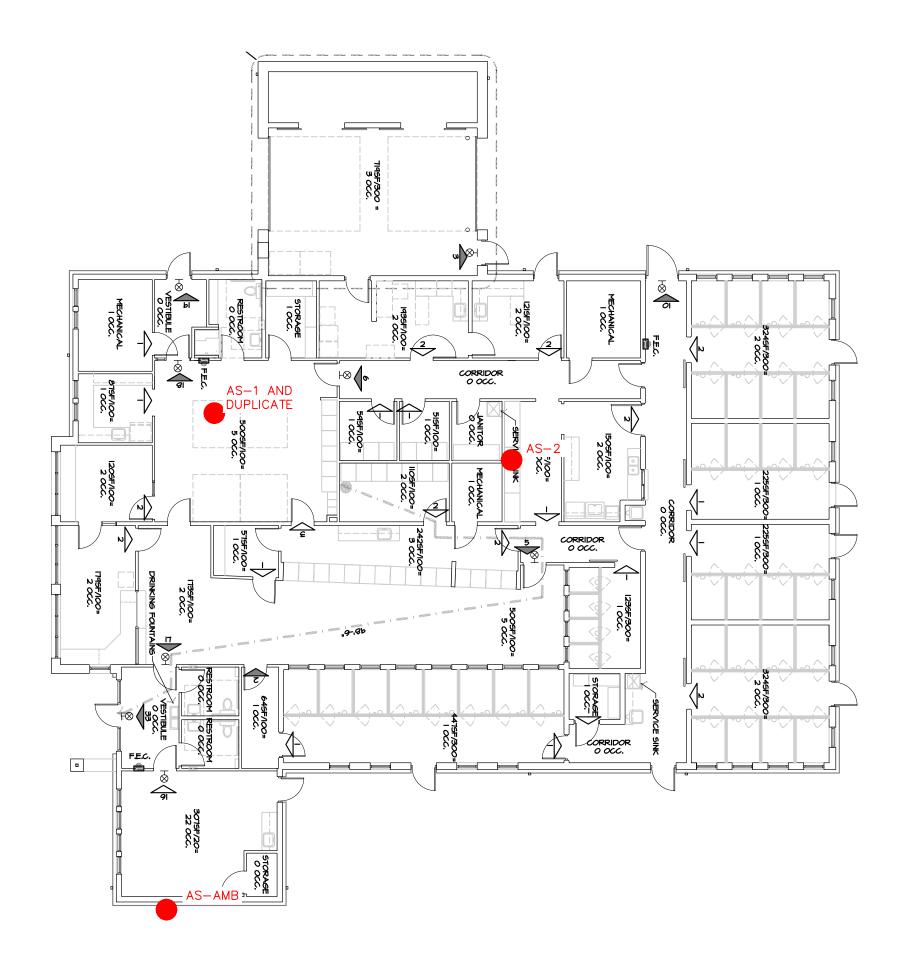


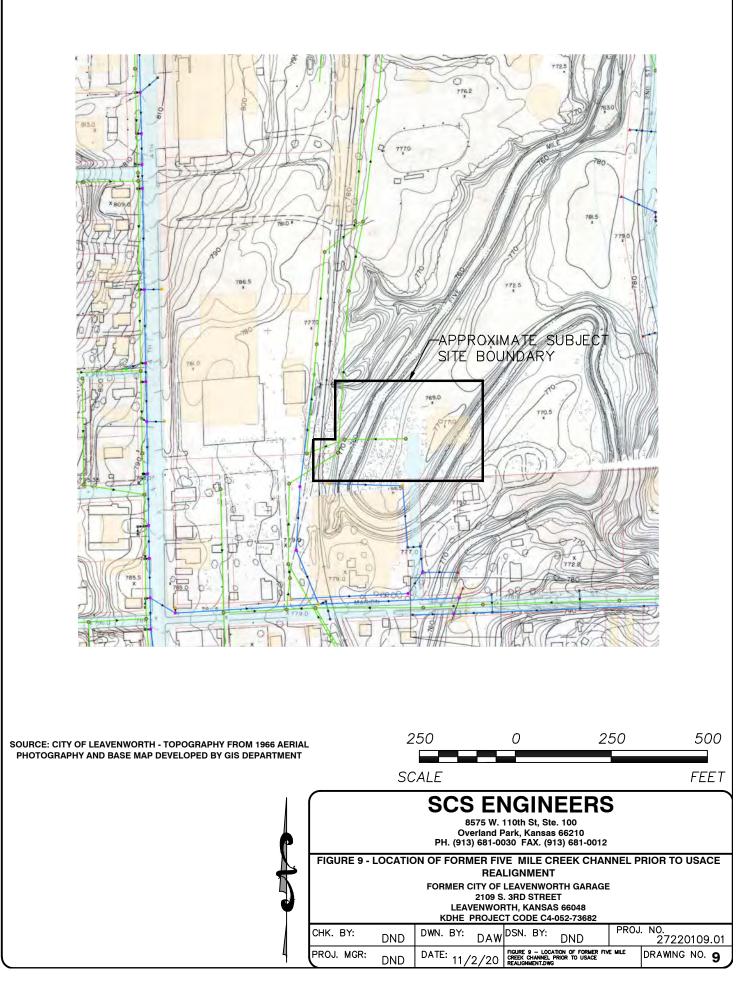


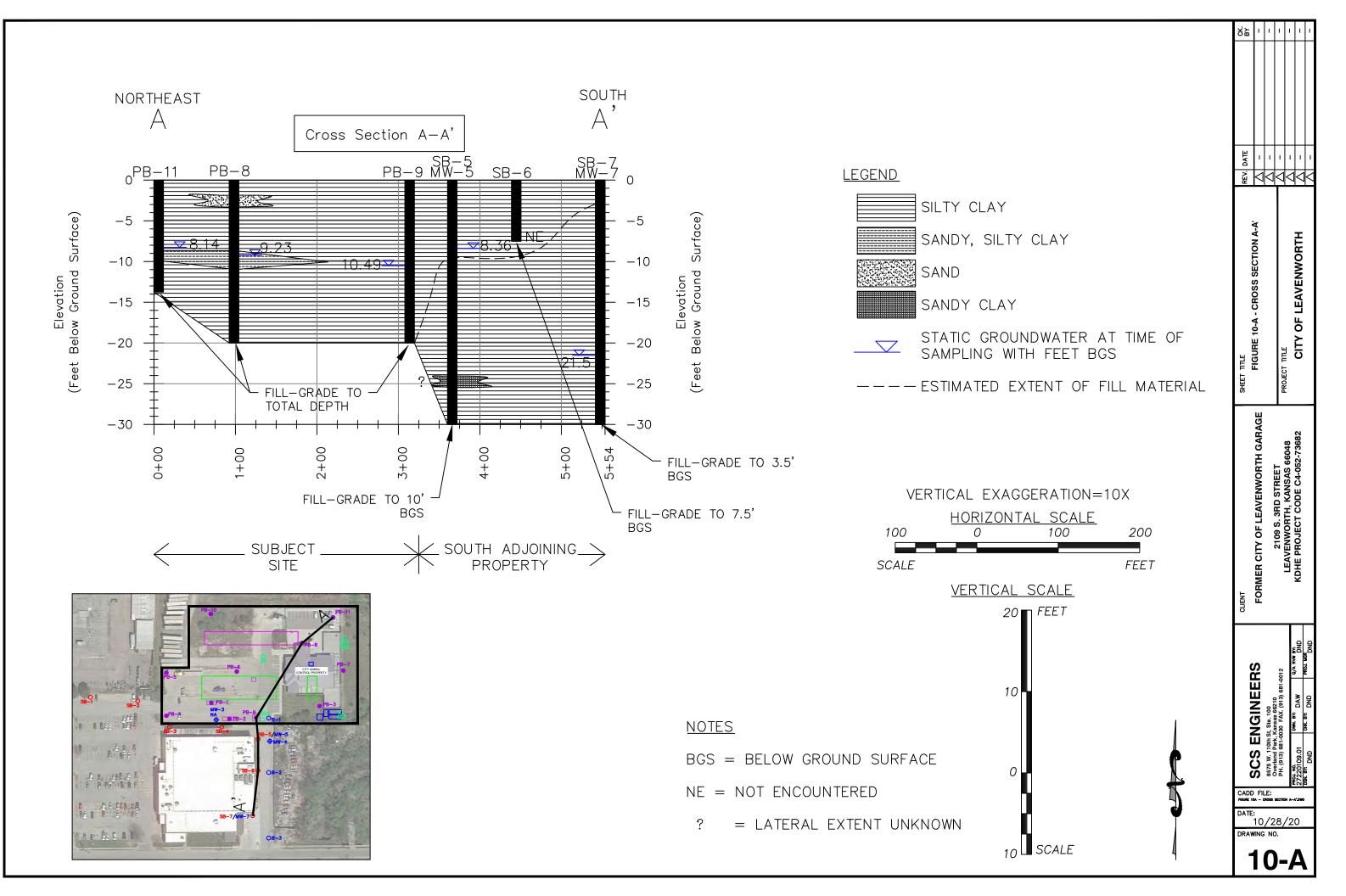


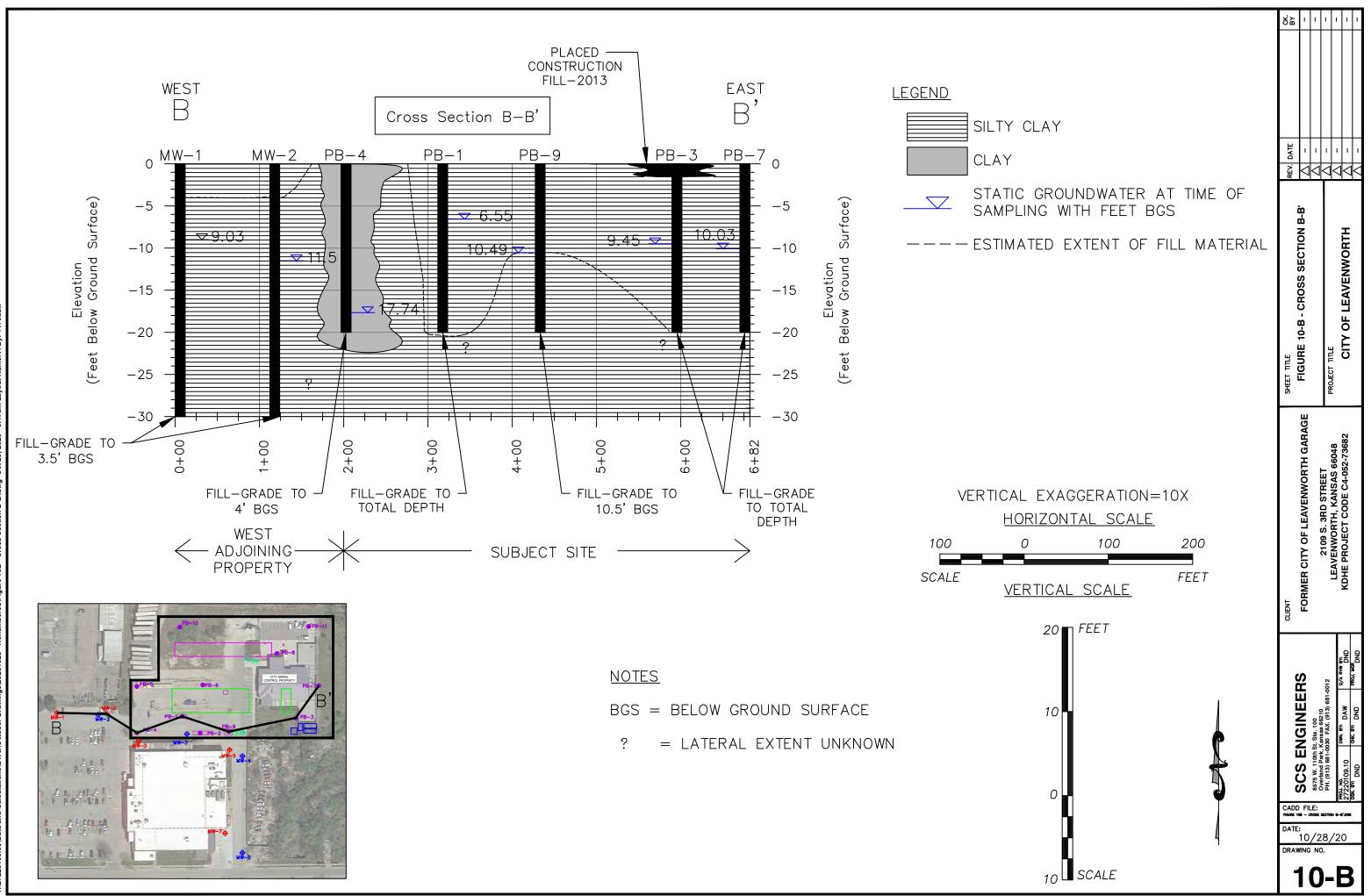


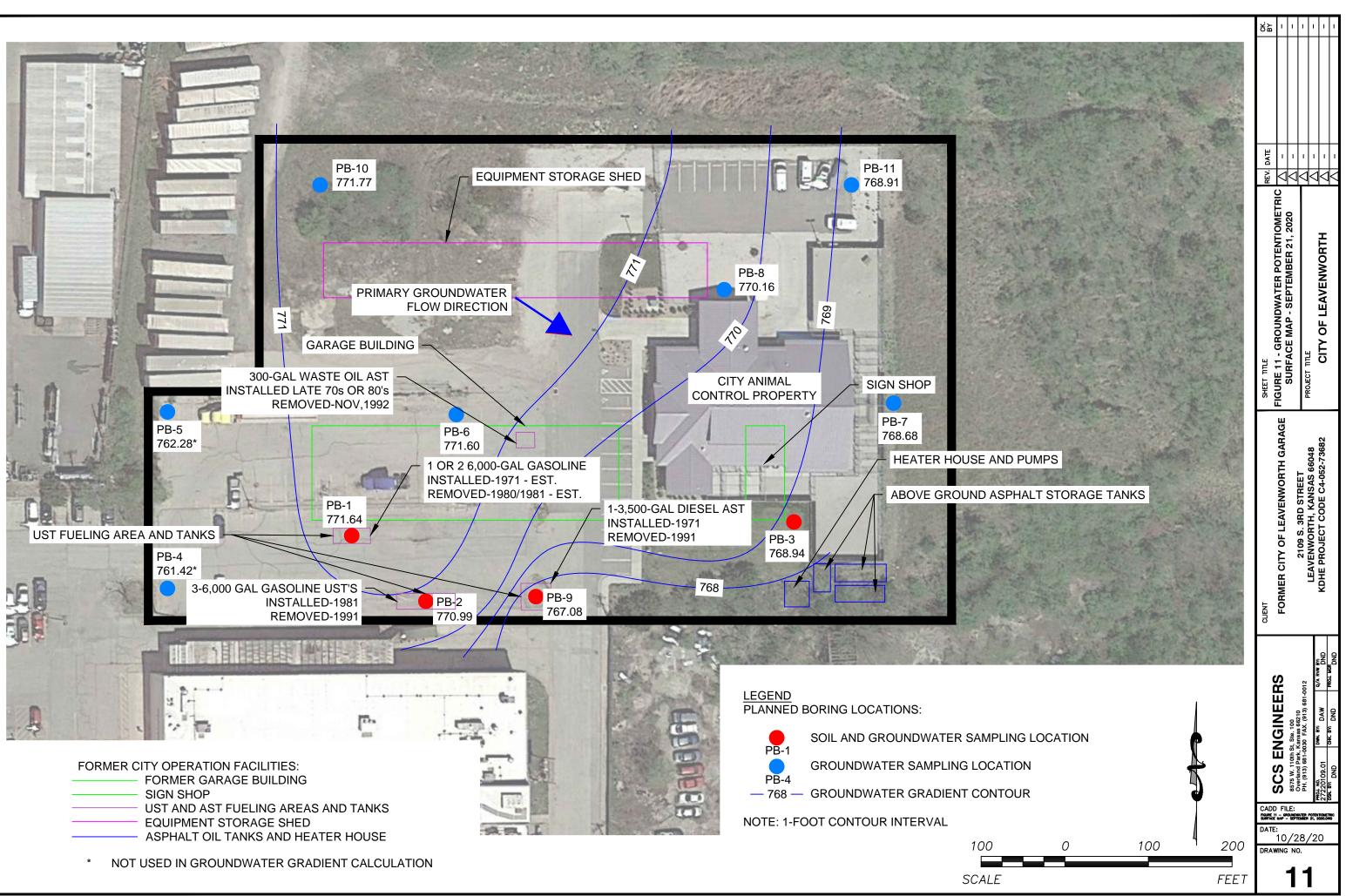


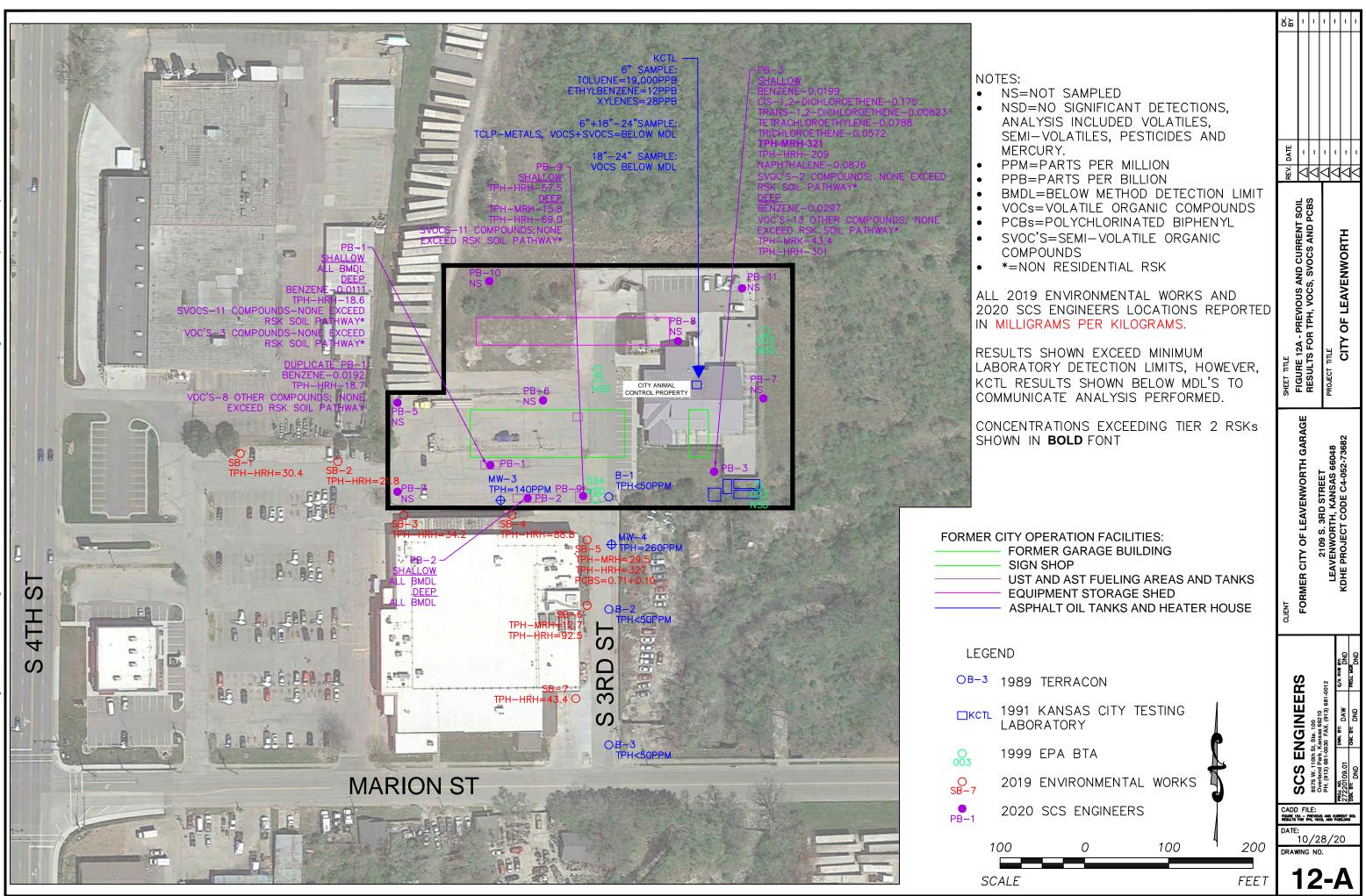


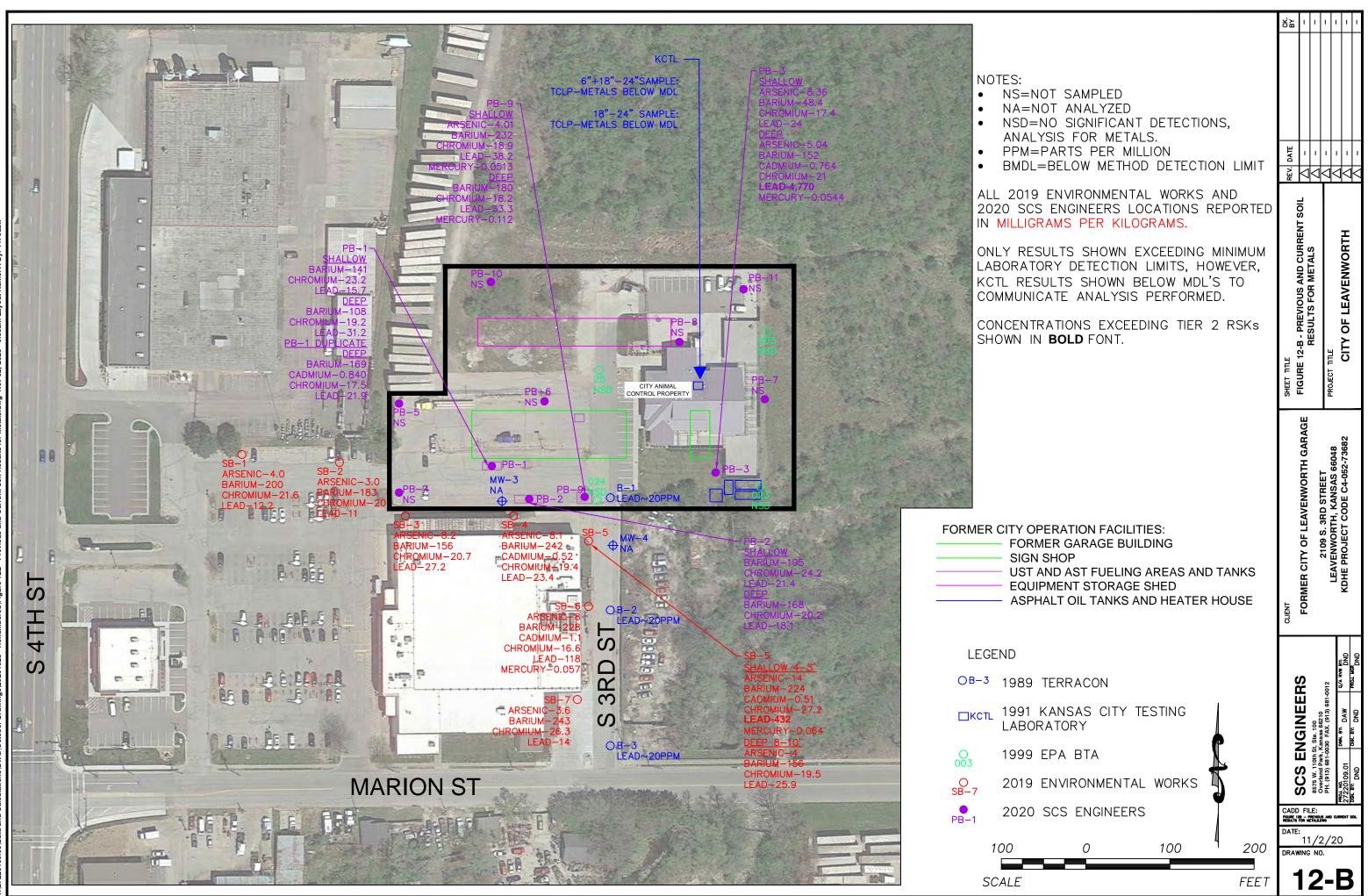


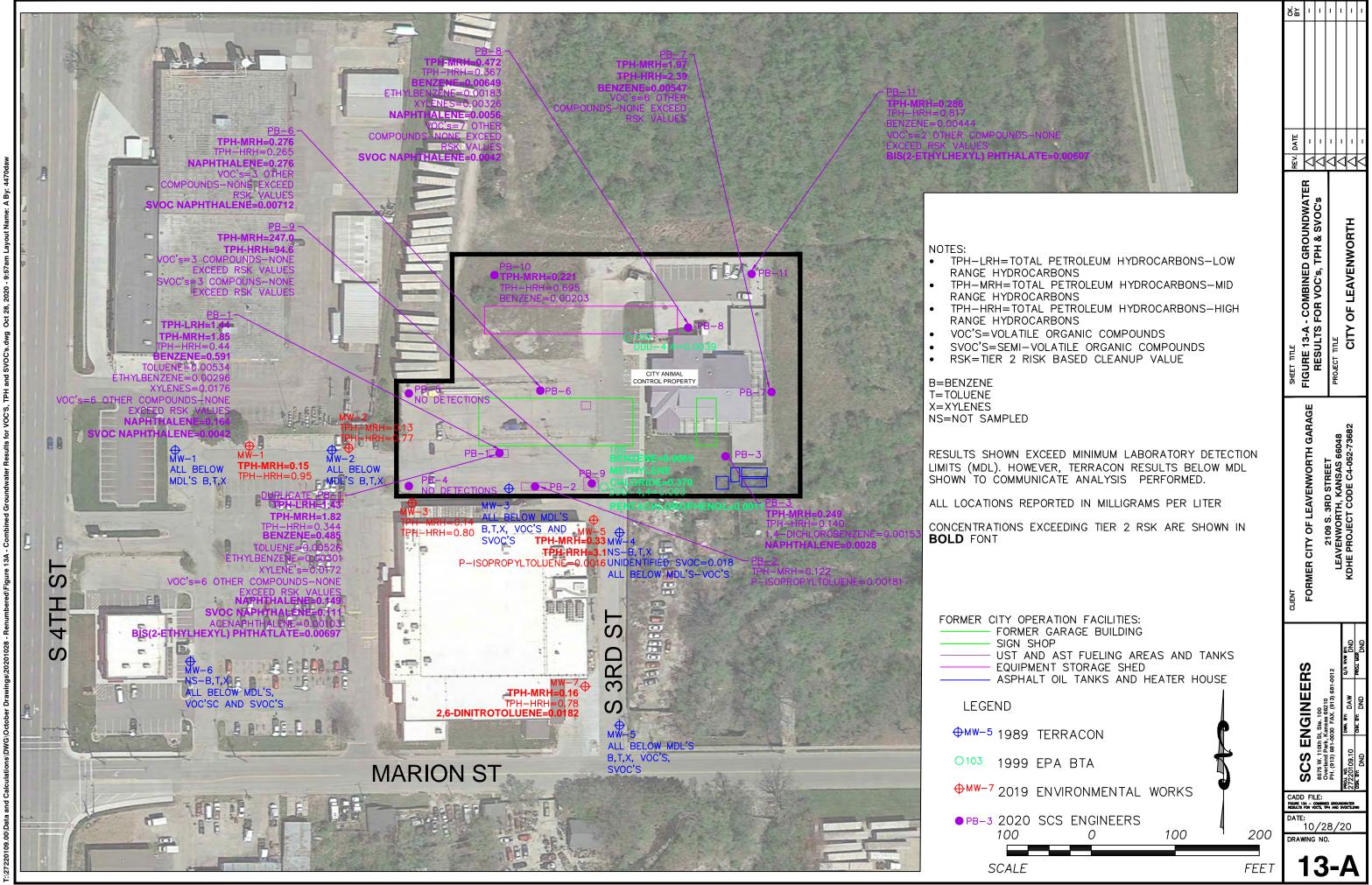


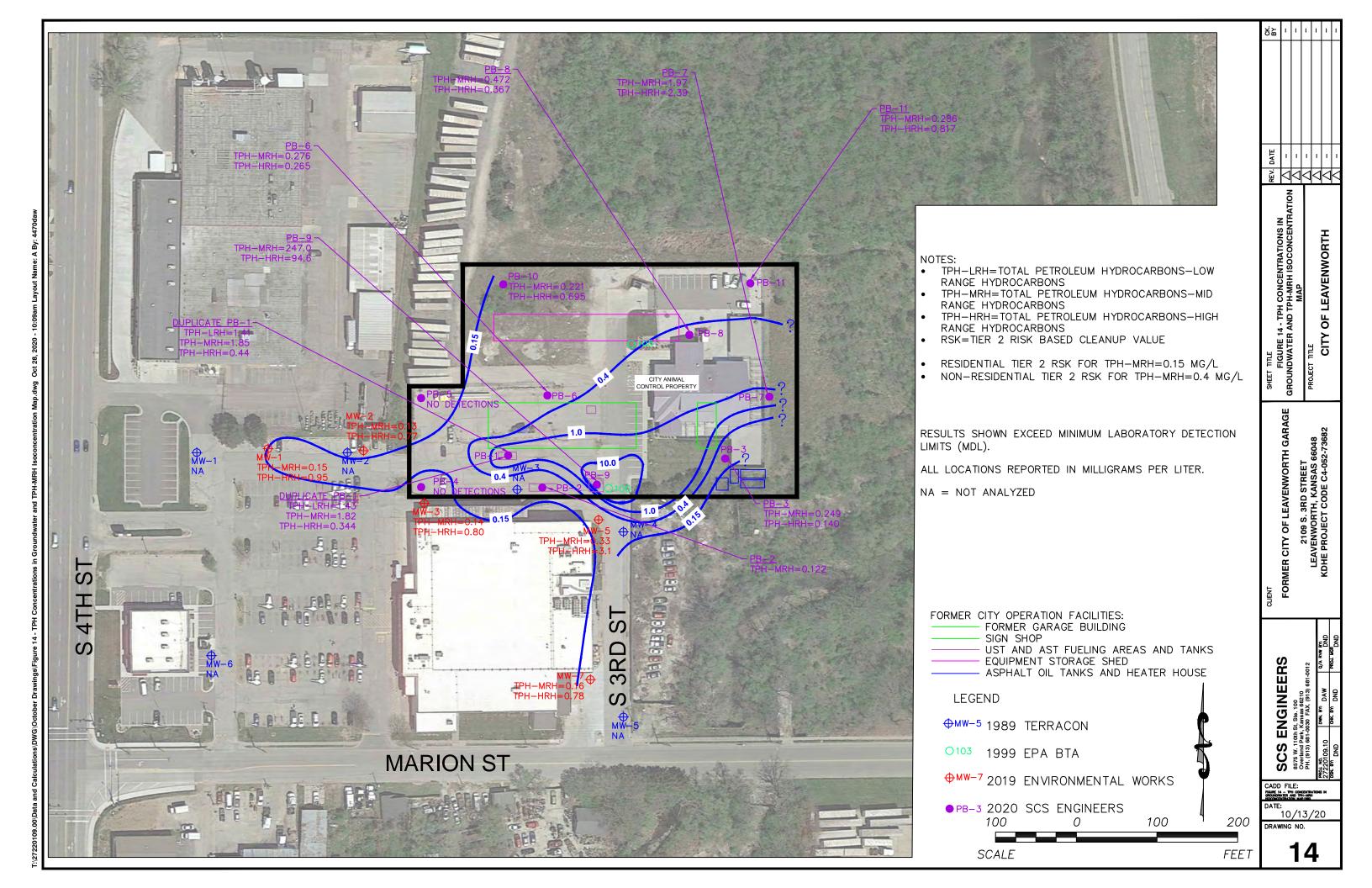


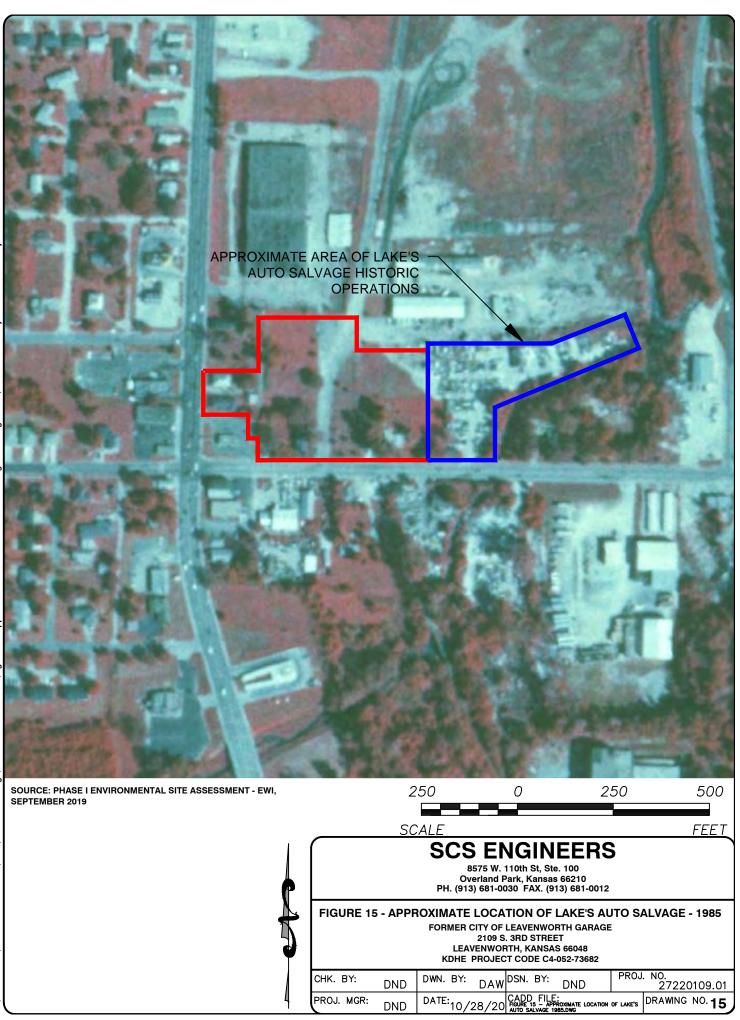

CLENT CLENT CLENT CLENT SHEET ΠLE SHEET ΠLE SHEET ΠLE REV. DATE REV. DATE REV. DATE NEERS FORMER CITY OF LEAVENWORTH GARAGE FIGURE 8 - AIR SAMPLING LOCATIONS A -
CLENT CLENT FORMER CITY OF LEAVENWORTH GARAGE 2109 S. 3RD STREET LEAVENWORTH, KANSAS 66048 KDHE PROJECT CODE C4-052-73682 RDHE PROJECT CODE C4-052-73682
CL M BND M B
VEERS 210 313) 681-0012 3.40 0.4 0.4 0.00 3.40 0.4 0.40 0.00 3.40 0.40 0.00
SCS ENGINEERS SF7 W. 110h St. Ste. 100 SF7 W. 110h St. Ste. 100 Overland Park, Kansas 66210 PH. (913) 661-0012 PM. (913) 661-0012
DATE: 10/12/20 DRAWING NO.











11.0 REFERENCES

CFS Engineers, Erosion Control Plan, Leavenworth Animal Control, January 21, 2013.

City of Leavenworth GIS Department, City Zoning Information, obtained July 23, 2020.

City of Leavenworth Public Works Department, 1966 Topographic Map and 2020 Planimetric Overlay, 2020, August 2020.

Environmental Works, Inc., Phase I Environmental Site Assessment, Price Chopper Property, 2107 South 4th Street, Leavenworth, Leavenworth County, Kansas, September 9, 2019.

Environmental Works, Inc., *Limited Phase II Environmental Site Assessment, Price Chopper Property,* 2107 South 4th Street, Leavenworth, Leavenworth County, Kansas, November 6, 2019.

Kansas City Testing Laboratory, *Report of Testing – City Service Center, 2101 South 3rd Street, Leavenworth, Kansas, December 18, 1991.*

Kansas Department of Health & Environment – Bureau of Environmental Remediation, Voluntary Cleanup and Property Redevelopment Program Manual, January 2020.

Kansas Department of Health & Environment – Bureau of Environmental Remediation, Identified Sites List Information – Project Code C405273682, Downloaded June 29, 2020.

Kansas Department of Health & Environment, UST Registration Renewal Form, City of Leavenworth, Facility I.D. 08286, April 1990.

Kansas Department of Health & Environment – Northeast District Office, Written Correspondence – City of Leavenworth, 5th & Shawnee, December 21, 1990.

Kansas Department of Health & Environment, *Buried Tank Leak Assessment – Leavenworth Garage, Project Code U4-052-00868A*, February 22, 1991.

Kansas Department of Health & Environment, *Buried Tank Leak Assessment – Leavenworth Garage, Project Code U4-052-00868B*, November 10, 1992.

Kansas Department of Health & Environment – Bureau of Environmental Remediation, *Risk Based Standards for Kansas, RSK Manual – 5th Version* dated October 2010 (including subsequent updates).

Kansas Department of Health & Environment, Written Project Correspondence – Former City Garage/City of Leavenworth Old City Landfill, February 24, 2020.

Kansas Department of Health & Environment, Written Project Correspondence – 2109 S. 3rd Street Leavenworth, Kansas, May 28, 2020.

Kansas Geological Survey, WWC5 Well Database, Query performed July 23, 2020.

McKinzie Construction, Inc., Brownfields Targeted Assessment Report- Leavenworth Landfill Site, Leavenworth, Kansas, June 25, 1999

Polk's City Directories, Leavenworth, Kansas, 1954 and 1958.

Professional Service Industries, Inc., Preliminary Geotechnical Engineering Services Report for the Proposed Animal Control Facility, Marion Street, Just East of 4th Street, Leavenworth, Kansas, March 21, 2012

Terracon Consultants SE, Inc., Subsurface Exploration Report, Proposed Supermarket, Fourth & Marion Streets, Leavenworth, Kansas, Job Number 02897029, October 26, 1989.

Terracon Environmental, Inc., Environmental Assessment – Phase II, Proposed Supermarket Site, Leavenworth, Kansas, December 26, 1989.

United States Environmental Protection Agency – Region VII, Written Correspondence – Former Leavenworth Municipal Landfill BTA, August 13, 1999.

United States Fish and Wildlife Survey, Information for Planning and Consultation, Query performed July 22, 2020.

United States Geological Survey, National Map Advanced Viewer, Query performed July 22, 2020.

United States Fish and Wildlife Service (USFWS) National Wetlands Inventory Mapper, Query performed July 22, 2020.

Williams, Spurgeon, Kuhl and Freshnock Architects, Inc., Leavenworth Animal Control Field Report Number 002, June 24, 2013.

Williams, Spurgeon, Kuhl and Freshnock Architects, Inc., Leavenworth Animal Control Field Report Number 09, August 21, 2013.

Williams, Spurgeon, Kuhl and Freshnock Architects, Inc., Leavenworth Animal Control Field Report Number 012, September 12, 2013.

12.0 ATTACHMENTS

ATTACHMENT A SCS Boring Logs

SC	S	EN	GIN	EE	RS		LOG OF BORING NO.: PB-1	SHEET NUMBER 1 of 1
8575	5 W 110th	Street, C	Overland Par	rk, Kansas	66210		DRILLING CONTRACTOR: SCS Engineers	WELL CONSTRUCTION DETAILS
			eavenworth				DRILLER: Whit Martin	MATERIAL:
PROJE			City Garage		IS		DRILLING RIG: 54DT	DIAMETER: IN
	NUMBER:						WELL TOTAL DEPTH: FT BGS	
	-						DRILLING METHOD: Direct-push SAMPLING METHOD: Macrocore	SCREEN LENGTH: FT
PROJECTI	OCATION	2109 So	outh 3rd Stre	et			BORING DIAMETER: 2.5"	RISER LENGTH: FT
TROUEDTE	oormon.	2100 00		01			WELL DIAMETER:	TOP OF SCREEN: FT BGS
BORING L							WELL COMPLETION:	BOTTOM OF SCREEN: FT BGS
PROJECT							SURFACE ELEVATION:	SCREEN SLOT: IN
	OLOGIST:	.leff.lan	zen				TOC ELEVATION:	TOP OF FILTER PACK: FT BGS
START DATE:			FINISH DATE:	Q	/17/2020		WATER LEVEL:	TOP OF SEAL: FT BGS
START DATE:	5/		FINISH DATE:	0,	1603		WATER ELEVATION:	TYPE OF SEAL:
SAMPLER	SAMPLE	PID		DEPTH	USCS	С	DATE:	TYPE OF FILTER PACK:
TYPE	DEPTH	(PPM)	RECOVERY	(FEET)	CLASS	ĭ	SOIL DESCRIPTION AND DRILLING CONDITIONS	NOTES AND WELL CONSTRUCTION
				1			Fill material with gravel/brick/limestone to 1.5'	
				3			Fill material, damp, firm, medium brown, silty CLAY	
							No recovery	
								1
				5			Fill material, damp, firm, medium brown, silty CLAY	
	6							
	6							
				7				
				8				
				0				
							Fill material, damp, firm, medium brown, silty CLAY	
				9				
							Refusal at 9' - Relocated boring 8 feet south as PB-1A	
				10				
				11				
				``+				
				12				
							1	
				13			1	
							1	
							1	
				14			1	
				15			1	
							1	
				16			1	
				17				
				18			1	
					1		1	
				19			1	
				19			1	
							1	
				20				
LEGEN	D:		PID - Photo	pionization	Detecto	r	HA - Hand Auger	
SS - Split			PP - Pock	et Penetro	ometer		WR - Wash Bore	S REPRESENT APPROXIMATE EN SOIL AND ROCK TYPES: ACTUAL
CS - 5 foo		mpler	HSA - Hollo				RB - Rock Bit TRANSITIONS MAY BE GRA	
ST - Shelk	oy Tube		DT - Dual T	Tube Sam	oler		NX - Rock Core	

SC	SI	N	GIN	EE	RS		LOG OF BORING NO.: PB-1A	SHEET NUMBER 1 of 1
8575	W 110th \$	Street, C	Overland Par	k, Kansas	66210		DRILLING CONTRACTOR: SCS Engineers	WELL CONSTRUCTION DETAILS
	CLIENT:	City of L	eavenworth				DRILLER: Whit Martin	MATERIAL:
PROJEC	CT NAME: I	Former	City Garage	Operation	S		DRILLING RIG: 54DT	DIAMETER: IN
PROJECT	NUMBER:	2722010	09.01				DRILLING METHOD: Direct-push	WELL TOTAL DEPTH: FT BGS
							SAMPLING METHOD: Macrocore	SCREEN LENGTH: FT
PROJECT LC	DCATION: 2	2109 So	outh 3rd Stre	et			BORING DIAMETER: 2.5"	RISER LENGTH: FT
							WELL DIAMETER: 1"	TOP OF SCREEN: FT BGS
BORING LC							WELL COMPLETION: 9/17/2020	BOTTOM OF SCREEN: FT BGS
PROJECT		1-46 1-1-					SURFACE ELEVATION: 778.23	SCREEN SLOT: IN
		Jeff Jan	-	0	47/2020		TOC ELEVATION: 778.19	TOP OF FILTER PACK: FT BGS
TART DATE:	9/		FINISH DATE: FINISH TIME:	9/	17/2020		WATER LEVEL: 6.55 WATER ELEVATION: 771.64	TOP OF SEAL: FT BGS TYPE OF SEAL:
1	SAMPLE	PID		DEPTH	USCS	с	DATE: 9/21/2020	TYPE OF FILTER PACK:
TYPE	DEPTH	(PPM)	RECOVERY	(FEET)	CLASS	ĩ	SOIL DESCRIPTION AND DRILLING CONDITIONS	NOTES AND WELL CONSTRUCTION
	-	0.2	-	1			Fill material, damp, firm, medium brown, silty CLAY	gravel in fill to 1.5' and at 2' sample PB-1 2'-4' collected at 1634
	-	0.0		3			Fill material, damp, firm, medium brown, silty CLAY	_
		8.6		7			Fill material, damp, firm, dark brown, silty CLAY	-
	F			Ŭ				-
		47.0					Fill material, damp, firm, dark brown, silty CLAY	
		17.2		9				-1
							saturated, trash with asphalt	_
		13.9		10			Fill material, damp, soft, medium brown, silty CLAY	sample PB-1 9.5'-11.5' collected at 16
				12			No recovery	-
	F		1				Fill material, very wet, trash/glass/brick	1
		1.9		13			n material, very wet, trash/glass/brick	
		1.9		13			Fill material, wet, soft, medium brown, silty CLAY	
		NR		15			No recovery	
		3.6		17			Fill material, wet, soft, medium brown, silty CLAY	
		NR		19			No recovery	
				20 X	[<u> </u>	Total depth 20'
EGEND			PID - Photo			r	HA - Hand Auger THE STRATIFICATION LIN	ES REPRESENT APPROXIMATE
S - Split S S - 5 foot T - Shelb	CME San	npler	PP - Pock HSA - Hollo DT - Dual T	w Stem A	ugers		WR - Wash Bore	EEN SOIL AND ROCK TYPES: ACTUAL

SC	CS I	EN	GIN	EE	RS		LOG OF BORING NO.: PB-2	SHEET NUMBER 1 of
8575	5 W 110th	Street, C	Overland Par	k, Kansas	66210		DRILLING CONTRACTOR: SCS Engineers	WELL CONSTRUCTION DETAILS
	CLIENT:	Citv of L	eavenworth				DRILLER: Whit Martin	MATERIAL:
PROJE			City Garage	Operation	าร		DRILLING RIG: 54DT	DIAMETER: IN
	NUMBER:						DRILLING METHOD: Direct-push	WELL TOTAL DEPTH: FT BGS
							SAMPLING METHOD: Macrocore	SCREEN LENGTH: FT
		2100 50	outh 3rd Stre	ot			BORING DIAMETER: 2.5"	RISER LENGTH: FT
KOJECT L	OCATION.	2109 30		ει				
	00.TON						WELL DIAMETER: 1"	TOP OF SCREEN: FT BGS
	OCATION:						WELL COMPLETION: 9/17/2020	BOTTOM OF SCREEN: FT BGS
	NUMBER:						SURFACE ELEVATION: 777.90	SCREEN SLOT: IN
GE	OLOGIST:						TOC ELEVATION: 777.38	TOP OF FILTER PACK: FT BGS
ART DATE:	9/		FINISH DATE:	9	/17/2020		WATER LEVEL: 6.39	TOP OF SEAL: FT BGS
ART TIME:		1423	FINISH TIME:		1522		WATER ELEVATION: 770.99	TYPE OF SEAL:
AMPLER	SAMPLE	PID	RECOVERY	DEPTH	USCS	С	DATE: 9/21/2020	TYPE OF FILTER PACK:
TYPE	DEPTH	(PPM)		(FEET)	CLASS	I	SOIL DESCRIPTION AND DRILLING CONDITIONS	NOTES AND WELL CONSTRUCTION
		0.0		12			Fill material, damp, firm, light gray, silty CLAY	gravel/rock/brick in fill to 1' sample PB-2 1'-3' collected at 1435
		0.0		3				
							Fill material, damp, firm, black, silty CLAY	
				4			No recovery	
							· · ·	
		1.6		5			Fill material, damp, firm, medium brown, silty CLAY	
		8.3		7			Fill material, wet, firm, medium brown, silty CLAY	-
				⇒ ₿			no recovery	
		0.0		9			Fill material, wet, soft, dark brown, silty CLAY	_
			-	10			Fill material, wet, firm, dark brown, silty CLAY	
		0.3		11				
		0.0		12 13			Fill material, wet, firm, dark brown, silty CLAY	sample PB-2 12'-14' collected at 1520
				14			Fill material, wet, soft, dark brown, silty CLAY	
		NR		15 16			No recovery	
		NR					No recovery	
		NR						
				20	Detect			Total depth 20'
EGEND: PID - Photoionization Detector S - Split Spoon PP - Pocket Penetrometer S - 5 foot CME Sampler HSA - Hollow Stem Augers T - Shelby Tube DT - Dual Tube Sampler						-	W/R - Wash Bore	IES REPRESENT APPROXIMATE EEN SOIL AND ROCK TYPES: ACTUAL RADUAL.

SC	S	EN	GIN	EE	R S		LOG OF BORING NO.: PB-3	SHEET NUMBER 1 of
8575	5 W 110th	Street, C	Overland Par	k, Kansas	66210		DRILLING CONTRACTOR: SCS Engineers	WELL CONSTRUCTION DETAILS
	CLIENT:	City of L	.eavenworth				DRILLER: Whit Martin	MATERIAL:
PROJEC	CT NAME:	Former	City Garage	Operatior	IS		DRILLING RIG: 54DT	DIAMETER: IN
PROJECT	NUMBER:	2722010	09.01	-			DRILLING METHOD: Direct-push	WELL TOTAL DEPTH: FT BGS
							SAMPLING METHOD: Macrocore	SCREEN LENGTH: FT
ROJECTLO	OCATION:	2109 So	outh 3rd Stre	et			BORING DIAMETER: 2.5"	RISER LENGTH: FT
		2100 00		01			WELL DIAMETER: 1"	TOP OF SCREEN: FT BGS
BORING LO							WELL COMPLETION: 9/18/2020	BOTTOM OF SCREEN: FT BGS
PROJECT							SURFACE ELEVATION: 778.56	SCREEN SLOT: IN
	OLOGIST:	leff lan	700				TOC ELEVATION: 778.39	TOP OF FILTER PACK: FT BGS
			FINISH DATE:	0	/18/1930		WATER LEVEL: 9.45	
ART DATE:	9/		FINISH DATE: FINISH TIME:	9	1007		WATER LEVEL: 9.45 WATER ELEVATION: 768.94	
ART TIME:	-		FINISH TIME:			1		
AMPLER TYPE	SAMPLE DEPTH	PID (PPM)	RECOVERY	DEPTH (FEET)	USCS CLASS	C I	DATE: 9/21/2020 SOIL DESCRIPTION AND DRILLING CONDITIONS	TYPE OF FILTER PACK: NOTES AND WELL CONSTRUCTION
		0.0		1			Placed construction fill, damp, firm, medium brown, silty CLAY	topsoil/fill with brick/gravel to 1'
		0.8		2			Fill material, damp, firm, dark brown, silty CLAY	sample PB-3 1.5'-3.5' collected at 093
		1.4		5			Fill material, damp, firm, light brown, silty CLAY	
		1.6		6 7			Fill material, damp, firm, medium brown, silty CLAY	
				8			Fill material, damp, firm, dark brown, silty CLAY	trash and debris present
				Ŭ				trasmand debhs present
							Fill material, damp, soft, medium brown, silty CLAY	
		0.7		91011			Fill material, damp, firm, dark brown/black, silty CLAY	sample PB-3 9'-11' collected at 0957 trash and debris present
		0.7					No recovery	_
		8.6		13			Fill material, damp, firm, medium brown, silty CLAY	-
		0.0		14			wet, soft, black, silty CLAY	trash and debris present
		NR		15 16			No recovery	
		2.4		17			Fill material, wet, soft, black, silty CLAY	rag/carpet trash and debris
		NR					No recovery	
				20 X			1	Total depth 20'
EGEND):		PID - Photo	pionization	Detecto	r	HA - Hand Auger	
S - Split S S - 5 foot T - Shelb	t CME Sai	mpler	PP - Pock HSA - Hollo DT - Dual 1	ow Stem A	ugers		WR - Wash Bore	IES REPRESENT APPROXIMATE EEN SOIL AND ROCK TYPES: ACTUAL RADUAL.

SC	SE	N	GIN	EE	R S		LOG OF BORING NO.: PB-4	SHEET NUMBER 1 of 1
8575	5 W 110th S	Street, C	Overland Par	k, Kansas	66210		DRILLING CONTRACTOR: SCS Engineers	WELL CONSTRUCTION DETAILS
			.eavenworth				DRILLER: Whit Martin	MATERIAL:
PROJEC			City Garage	Operation	S		DRILLING RIG: 54DT	DIAMETER: IN
PROJECT	NUMBER: 2	2722010	09.01				DRILLING METHOD: Direct-push	WELL TOTAL DEPTH: FT BGS
							SAMPLING METHOD: Macrocore	SCREEN LENGTH: FT
PROJECT LO	DCATION: 2	2109 So	outh 3rd Stree	et			BORING DIAMETER: 2.5"	RISER LENGTH: FT
							WELL DIAMETER: 1"	TOP OF SCREEN: FT BGS
BORING LO	OCATION:						WELL COMPLETION: 9/17/2020	BOTTOM OF SCREEN: FT BGS
PROJECT							SURFACE ELEVATION: 779.28	SCREEN SLOT: IN
GEO	OLOGIST: J	Jeff Jan	zen				TOC ELEVATION: 779.16	TOP OF FILTER PACK: FT BGS
START DATE:	9/1	7/2020	FINISH DATE:	9/	17/2020		WATER LEVEL: 17.74	TOP OF SEAL: FT BGS
START TIME:		1132	FINISH TIME:		1154		WATER ELEVATION: 761.42	TYPE OF SEAL:
SAMPLER	SAMPLE	PID		DEPTH	USCS	С	DATE: 9/21/2020	TYPE OF FILTER PACK:
TYPE	DEPTH	(PPM)	RECOVERY	(FEET)	CLASS	I.	SOIL DESCRIPTION AND DRILLING CONDITIONS	NOTES AND WELL CONSTRUCTION
		0.0		1			SILT	_
	F			2			Native, damp, firm, dark gray/black, CLAY	_
		0.0		3			No recovery	
		0.0		5			Native, damp, firm, medium brown/olive, CLAY	
	-	0.0		6 7				
		0.0		8			Native, damp, firm, medium brown/olive, CLAY	
	_	0.0		10			Native, wet, soft, medium brown/olive, CLAY	_
	_		-	12				4
		0.0		13			Native, wet, soft, medium brown/olive, CLAY	
		0.0		15			Native, wet, soft, light gray/olive, CLAY	
		0.0		16 17			Native, wet, soft, light brown, CLAY	-
	-	0.0		18			Native, wet, soft, light gray/olive, CLAY	
				20				Total depth 20'
LEGEND SS - Split S CS - 5 foot ST - Shelb	Spoon t CME Sam	npler	PID - Photo PP - Pock HSA - Hollo DT - Dual 1	et Penetro w Stem A	ometer ugers	r	WR - Wash Bore	ES REPRESENT APPROXIMATE EEN SOIL AND ROCK TYPES: ACTUAL

SC	S	EN	GIN	EE	R S		LOG OF BORING NO.: PB-5	SHEET NUMBER 1 of
8575	5 W 110th	Street, C	Overland Par	k, Kansas	66210		DRILLING CONTRACTOR: SCS Engineers	WELL CONSTRUCTION DETAILS
	CLIENT:	City of L	eavenworth				DRILLER: Whit Martin	MATERIAL:
PROJE			City Garage	Operation	IS		DRILLING RIG: 54DT	DIAMETER: IN
PROJECT	NUMBER:	2722010	09.01	<u>.</u>			DRILLING METHOD: Direct-push	WELL TOTAL DEPTH: FT BGS
							SAMPLING METHOD: Macrocore	SCREEN LENGTH: FT
PROJECT LO	OCATION:	2109 Sc	outh 3rd Stre	et			BORING DIAMETER: 2.5"	RISER LENGTH: FT
							WELL DIAMETER: 1"	TOP OF SCREEN: FT BGS
BORING L	OCATION:						WELL COMPLETION: 9/17/2020	BOTTOM OF SCREEN: FT BGS
PROJECT	NUMBER:						SURFACE ELEVATION: 779.66	SCREEN SLOT: IN
GE	OLOGIST:	Jeff Jan	zen				TOC ELEVATION: 779.63	TOP OF FILTER PACK: FT BGS
START DATE:	9/	/17/2020	FINISH DATE:	9/	/17/2020		WATER LEVEL: 17.35	TOP OF SEAL: FT BGS
START TIME:		1033	FINISH TIME:		1116		WATER ELEVATION: 762.28	TYPE OF SEAL:
SAMPLER	SAMPLE	PID	DECOVERY	DEPTH	USCS	С	DATE: 9/21/2020	TYPE OF FILTER PACK:
TYPE	DEPTH	(PPM)	RECOVERY	(FEET)	CLASS	Т	SOIL DESCRIPTION AND DRILLING CONDITIONS	NOTES AND WELL CONSTRUCTION
		0.0		1			Fill material, damp, firm, medium brown/gray, silt/clayey SILT	gravel present
		0.0						
								aspalt present
				2			Fill material, damp, firm, dark gray/black, CLAY	
		0.0		3				
				4			No recovery	1
				4			No recovery	
		0.0		5			Native, damp, firm, dark gray/black, CLAY	
				6				
				Ŭ				
		0.0		7			Native, damp, firm, medium brown/olive, CLAY	
				8				
				Ŭ				
		0.0		9			Native, damp, firm, medium brown/olive, CLAY	
				10				
		0.0		11				
		0.0						
							Native, wet, slightly firm, medium brown/gray, CLAY	
				12				1
							No recovery	
		0.0		13			Í	1
		0.0		· · •				1
							Native, wet, firm, medium brown/gray, CLAY	1
				14				
		0.0		15			1	1
							Native, wet, soft, medium brown/gray, CLAY	1
							ivalive, wel, soil, medium brown/gray, CLAY	1
			4	16		<u> </u>		4
							Native, wet, soft, medium gray, slightly silty CLAY	
		0.0		17			1	1
							1	1
				18				
			-	10				
							1	1
		0.2		19			1	1
							1	1
				20			Native, wet, soft, medium brown slightly silty CLAY	Total depth 20'
EGEN	ר.		PID - Photo	-	Detector	ļ	HA - Hand Auger	
SS - Split			PP - Pock				WB - Wash Bore	S REPRESENT APPROXIMATE
	spoon t CME Sa	molor	HSA - Hollo				BOUNDARY LINES BE I WEE	EN SOIL AND ROCK TYPES: ACTUAL
nn = in 100	I UNE Sal	IUDIEI	I ISA - MUIIC	W SIEIII A	uyers		TRANSITIONS MAY BE GRA	DUAI

SC	S	EN	GIN	EE	RS		LOG OF BORING NO.: PB-6	SHEET NUMBER 1 of 1
8575	5 W 110th	Street. C	Overland Par	k. Kansas	66210		DRILLING CONTRACTOR: SCS Engineers	WELL CONSTRUCTION DETAILS
			eavenworth	,			DRILLER: Whit Martin	MATERIAL:
PROJE			City Garage	Operation	S		DRILLING RIG: 54DT	DIAMETER: IN
PROJECT			, ,				DRILLING METHOD: Direct-push	WELL TOTAL DEPTH: FT BGS
							SAMPLING METHOD: Macrocore	SCREEN LENGTH: FT
PROJECT LO	OCATION:	2109 Sc	outh 3rd Stre	et			BORING DIAMETER: 2.5"	RISER LENGTH: FT
							WELL DIAMETER: 1"	TOP OF SCREEN: FT BGS
BORING LO	OCATION.						WELL COMPLETION: 9/17/2020	BOTTOM OF SCREEN: FT BGS
PROJECT							SURFACE ELEVATION: 777.87	SCREEN SLOT: IN
	OLOGIST:	Jeff Jan	zen				TOC ELEVATION: 777.52	TOP OF FILTER PACK: FT BGS
START DATE:			FINISH DATE:	9/	17/2020		WATER LEVEL: 5.92	TOP OF SEAL: FT BGS
START TIME:			FINISH TIME:		1010		WATER ELEVATION: 771.60	TYPE OF SEAL:
SAMPLER	SAMPLE	PID		DEPTH	USCS	с	DATE: 9/21/2020	TYPE OF FILTER PACK:
TYPE	DEPTH	(PPM)	RECOVERY	(FEET)	CLASS	ĭ	SOIL DESCRIPTION AND DRILLING CONDITIONS	NOTES AND WELL CONSTRUCTION
		25.1		1 2 3			Fill material, damp, soft, medium gray, slightly silty CLAY	topsoil/fill brick/gravel to 1'
		3.5		4 5 6			Fill material, damp, soft, medium gray, slightly silty CLAY	limestone fragments at 6.5'
		5.4		8				1.5' thick asphalt layer at 7.5' possible boring sluff, PID reading 11.8
		5.0		9 10			Fill material, damp, soft, medium brown/gray, slightly silty CLAY	
		10.7		11			Fill material, wet, soft, medium brown/gray, slightly silty CLAY No recovery	trash debris in fill from 10'-11'
		NR		13 14			No recovery	
		NR		15 16				
				17 18 19			Refusal at 16'	
LEGENI SS - Split S CS - 5 foor ST - Shelb	Spoon t CME Sa	mpler	PID - Photo PP - Pock HSA - Hollo DT - Dual 1	et Penetro w Stem A	ometer ugers	r	WR - Wash Bore	S REPRESENT APPROXIMATE EN SOIL AND ROCK TYPES: ACTUAL DUAL.

SCS	5 E N	GIN	EE	RS		LOG OF BORING NO.: PB-7	SHEET NUMBER 1 of
8575 W	110th Street,	Overland Par	k, Kansas	66210		DRILLING CONTRACTOR: SCS Engineers	WELL CONSTRUCTION DETAILS
CL	LIENT: City of	eavenworth				DRILLER: Whit Martin	MATERIAL:
	NAME: Former		Operation	s		DRILLING RIG: 54DT	DIAMETER: IN
	/BER: 272201			-		DRILLING METHOD: Direct-push	WELL TOTAL DEPTH: FT BGS
		00.01				SAMPLING METHOD: Macrocore	SCREEN LENGTH: FT
	TION: 2109 S	outh 3rd Stro	ot			BORING DIAMETER: 2.5"	RISER LENGTH: FT
OJECT LOCA	(110N. 2109 3		ει			WELL DIAMETER: 1"	
	TION						
ORING LOCA						WELL COMPLETION: 9/18/2020 SURFACE ELEVATION: 778.79	BOTTOM OF SCREEN: FT BGS
ROJECT NUM							SCREEN SLOT: IN
	GIST: Jeff Jar		0/	40/0000		TOC ELEVATION: 778.71	TOP OF FILTER PACK: FT BGS
RT DATE:		FINISH DATE:	9/	18/2020		WATER LEVEL: 10.03	TOP OF SEAL: FT BGS
RT TIME:		FINISH TIME:		1053	1	WATER ELEVATION: 768.68	TYPE OF SEAL:
	MPLE PID EPTH (PPM)	RECOVERY	DEPTH (FEET)	USCS CLASS	C I	DATE: 9/21/2020	TYPE OF FILTER PACK:
ITPE DE	EPTH (PPM)		(FEEI)	CLASS	-	SOIL DESCRIPTION AND DRILLING CONDITIONS	NOTES AND WELL CONSTRUCTION
	0.5		1			Fill material, damp, firm, medium brown, silty CLAY	topsoil
	14.8	-	2			Fill material, damp, firm, dark brown/black, silty CLAY	gravel/asphalt present
	5.2		4 5			Fill material, damp, firm, medium brown, silty CLAY	
		-	6			Fill material, damp, firm, olive, silty CLAY	limestone (2")
	3.5		7			No recovery	glass/plastic/wood debris at 7'
	2.1		9			Fill material, damp, firm, medium brown, silty CLAY	_
		-	10			Fill material, damp, firm, dark brown/gray, silty CLAY	metal/glass/plastic debris at 10'
	2.7		11 X 12 X			No recovery	
	9.2		13			Fill material, wet, soft, black, silty CLAY	plastic/paper/glass debris at 13.5'
	NR	-	14 15 16			No recovery	
	1.9		17			Fill material, wet, soft, dark brown, silty CLAY	
	2.5	-	18 19 20			No recovery	brick/plastic/wood debris at 18' Total depth 20'
EGEND: S - Split Spo S - 5 foot CN T - Shelby T	ME Sampler	PID - Photo PP - Pock HSA - Hollo DT - Dual 1	et Penetro ow Stem A	meter ugers	r	W/R - Wash Bore	ES REPRESENT APPROXIMATE EN SOIL AND ROCK TYPES: ACTUAL ADUAL.

SC	SI	E N	GIN	EE	RS		LOG OF BORING NO.: PB-8	SHEET NUMBER 1 of
8575	5 W 110th	Street, C	Overland Par	k, Kansas	66210		DRILLING CONTRACTOR: SCS Engineers	WELL CONSTRUCTION DETAILS
	CLIENT:	City of L	.eavenworth				DRILLER: Whit Martin	MATERIAL:
PROJE			City Garage	Operation	S		DRILLING RIG: 54DT	DIAMETER: IN
PROJECT	NUMBER:	2722010	09.01				DRILLING METHOD: Direct-push	WELL TOTAL DEPTH: FT BGS
							SAMPLING METHOD: Macrocore	SCREEN LENGTH: FT
ROJECT L	OCATION:	2109 So	outh 3rd Stree	et			BORING DIAMETER: 2.5"	RISER LENGTH: FT
							WELL DIAMETER: 1"	TOP OF SCREEN: FT BGS
BORING L	OCATION:						WELL COMPLETION: 9/18/2020	BOTTOM OF SCREEN: FT BGS
PROJECT	NUMBER:						SURFACE ELEVATION: 778.89	SCREEN SLOT: IN
GE	OLOGIST:	Jeff Jan	zen				TOC ELEVATION: 779.39	TOP OF FILTER PACK: FT BGS
ART DATE:	9/	18/2020	FINISH DATE:	9/	18/2020		WATER LEVEL: 9.23	TOP OF SEAL: FT BGS
ART TIME:		1251	FINISH TIME:		1332		WATER ELEVATION: 770.16	TYPE OF SEAL:
AMPLER	SAMPLE	PID	RECOVERY	DEPTH	USCS	С	DATE: 9/21/2020	TYPE OF FILTER PACK:
TYPE	DEPTH	(PPM)	REGOVERI	(FEET)	CLASS	I	SOIL DESCRIPTION AND DRILLING CONDITIONS	NOTES AND WELL CONSTRUCTION
		63.0		1			Fill material, damp, firm, medium brown, silty CLAY	coarse gravel
				2			Fill material, sand layer	
			1				Fill material, damp, firm, dark brown, silty CLAY	brick debris at 2.5'
		58.0		3				
		50.0						-
				. (Å			No recovery	1
				4				_
		45.0		5			Fill material, damp, firm, light brown, silty CLAY	
								brick/gravel debris at 5.5'
				6				Showgraver debris at 0.0
	-			· ·				-
		20.0		7			Fill material, damp, hard, dark brown/olive, silty CLAY	
				8				
								1
		10.0						aand miyad in apil aara
		12.0		9			Fill material, wet, soft, gray, silty CLAY	sand mixed in soil core
				10				wood/gravel/brick debris at 10'
		6.7		11			Fill material, wet, firm, black,silty CLAY	-
		0.1						
				12			No recovery	-
				' <u>^</u>				4
							Fill material, wet, soft, black, silty CLAY	
		1.1		13				4
								1
				14			Fill material, wet, firm, black, silty CLAY	
			1				1	
		1.2		15				
		1.2		10				
								plastic/brick/wood/glass debris at 15'
				16				4
	[
		1.4		17			Fill material, wet, soft, black, silty CLAY	petroleum odor
								plastic/glass debris at 17.5'
				10			1	piastorgiass debits at 17.5
			•	18			l	4
				— Д				
		NR		19 🗙			No recovery	
				\square				
				20				Total depth 20'
GEN	D:		PID - Photo	ionization	Detector		HA - Hand Auger	
S - Split Spoon PP - Pocket Penetrometer							WB - Wash Bore THE STRATIFICATION LINE	ES REPRESENT APPROXIMATE
	of CME San	npler	HSA - Hollo				BOUNDARY LINES BETWE	EN SOIL AND ROCK TYPES: ACTUAL
	by Tube		DT - Dual T		0		NX - Rock Core	ADUAL.

SC	S	EN	GIN	EE	RS		LOG OF BORING NO.: PB-9	SHEET NUMBER 1 of 1
8575	5 W 110th	Street. C	Overland Par	k. Kansa	s 66210		DRILLING CONTRACTOR: SCS Engineers	WELL CONSTRUCTION DETAILS
			eavenworth	,			DRILLER: Whit Martin	MATERIAL:
PROJE			City Garage	Operatio	ns		DRILLING RIG: 54DT	DIAMETER: IN
	NUMBER:						DRILLING METHOD: Direct-push	WELL TOTAL DEPTH: FT BGS
							SAMPLING METHOD: Macrocore	SCREEN LENGTH: FT
PROJECT L	OCATION:	2109 So	outh 3rd Stree	et			BORING DIAMETER: 2.5"	RISER LENGTH: FT
							WELL DIAMETER: 1"	TOP OF SCREEN: FT BGS
BORING L	OCATION						WELL COMPLETION: 9/17/2020	BOTTOM OF SCREEN: FT BGS
PROJECT							SURFACE ELEVATION: 777.60	SCREEN SLOT: IN
	OLOGIST:	Jeff Jan	zen				TOC ELEVATION: 777.57	TOP OF FILTER PACK: FT BGS
START DATE:			FINISH DATE:	ç	/17/2020		WATER LEVEL: 10.49	TOP OF SEAL: FT BGS
START TIME:			FINISH TIME:		1348		WATER ELEVATION: 767.08	TYPE OF SEAL:
SAMPLER	SAMPLE	PID		DEPTH	USCS	С	DATE: 9/21/2020	TYPE OF FILTER PACK:
TYPE	DEPTH	(PPM)	RECOVERY	(FEET)	CLASS	ĩ	SOIL DESCRIPTION AND DRILLING CONDITIONS	NOTES AND WELL CONSTRUCTION
		NA		1			Fill material with brick/gravel/limestone pieces	
		12.1		2			Fill material, moist, firm, olive, silty CLAY	sample PB-9 2'-4' collected at 1306
					ſ		Fill material, moist, firm, black, silty CLAY	
				4	1	1	No recovery	1
						-		-
		19.6		5			Fill material, moist, firm, black, silty CLAY	mostly brick/gravel/limestone fill 4'-7.5'
				6				
		19.1		7	-			-
				8			Fill material, damp, firm, medium brown, silty CLAY	-
		14.1		9			Fill material, damp, firm, medium brown, silty CLAY	brick/gravel/limestone fill 8'-10.5'
				10	-			sample PB-9 9'-11' collected at 1332
		38.5		11 12	-		Fill material, wet, soft, medium brown/gray, silty CLAY	
		61.8		13	-		Fill material, wet, soft, gray, silty CLAY	
		202.8	•	14 15			Fill material, wet, very soft, gray, silty CLAY	-
				16			n in matchai, wet, very sort, gray, sitty CLAT	-
		NR		17 18			No recovery	
		NR		19 19				
	<u>.</u>			20		1		Total depth 20'
LEGENI SS - Split CS - 5 foo ST - Shelt	Spoon It CME Sal	mpler	PID - Photo PP - Pock HSA - Hollo DT - Dual 1	et Penetr w Stem /	ometer Augers	r	W/R - Wash Bore	S REPRESENT APPROXIMATE EN SOIL AND ROCK TYPES: ACTUAL ADUAL.

SC	S	EN	GIN	EE	RS		LOG OF BORING NO.: PB-10	SHEET NUMBER 1 of
8575	5 W 110th	Street, C	Overland Par	k, Kansas	66210		DRILLING CONTRACTOR: SCS Engineers	WELL CONSTRUCTION DETAILS
	CLIENT:	City of L	.eavenworth				DRILLER: Whit Martin	MATERIAL:
PROJE	CT NAME:	Former	City Garage	Operation	าร		DRILLING RIG: 54DT	DIAMETER: IN
PROJECT	NUMBER:	2722010	09.01				DRILLING METHOD: Direct-push	WELL TOTAL DEPTH: FT BGS
							SAMPLING METHOD: Macrocore	SCREEN LENGTH: FT
ROJECT LO	OCATION:	2109 Sc	outh 3rd Stre	et			BORING DIAMETER: 2.5"	RISER LENGTH: FT
							WELL DIAMETER: 1"	TOP OF SCREEN: FT BGS
BORING LO	OCATION:						WELL COMPLETION: 9/18/2020	BOTTOM OF SCREEN: FT BGS
ROJECT	NUMBER:						SURFACE ELEVATION: 777.74	SCREEN SLOT: IN
GE	OLOGIST:	Jeff Jan	zen				TOC ELEVATION: 777.61	TOP OF FILTER PACK: FT BGS
ART DATE:	9/	18/2020	FINISH DATE:	9,	/18/2020		WATER LEVEL: 5.84	TOP OF SEAL: FT BGS
ART TIME:		1200	FINISH TIME:		1224		WATER ELEVATION: 771.77	TYPE OF SEAL:
MPLER	SAMPLE	PID	RECOVERY	DEPTH	USCS	С	DATE: 9/21/2020	TYPE OF FILTER PACK:
TYPE	DEPTH	(PPM)	RECOVERT	(FEET)	CLASS	I	SOIL DESCRIPTION AND DRILLING CONDITIONS	NOTES AND WELL CONSTRUCTION
							Fill material, damp, soft, medium brown, silty CLAY	topsoil with brick
		205.2		1				gravel in fill
		205.2		' 				graverin m
					-		Fill material, damp, firm, black, silty CLAY	
			4	2	1		1	
							1	
		30.4		3	1			
					1	-	Fill motorial damp firm alive sitty CLAV	1
					1		Fill material, damp, firm, olive, silty CLAY	
			4	4	ļ			
		114.8		5			Fill material, damp, firm, olive, silty CLAY	
				6				-
			-	0				
							Fill material, damp, firm, dark brown/gray, silty CLAY	gravel/brick/paper/plastic debris 5.5'-
		1.0		7				
							Fill material, wet, soft, gray, silty CLAY	
				8				
			-					-
							Fill material, wet, soft, gray, silty CLAY	
		171.3		9				metal/wood/paper debris 8'-11'
				10			Fill material, wet, firm, gray, silty CLAY	
		184.3		11				
		104.5						-
				Þ			No recovery	
				12 X				
		155.7		13			Fill material, wet, firm, gray, silty CLAY	metal/plastic debris 12'-14'
					1			
					1		1	
			-	14				_
					J		1	
		NR		15 🗙]		No recovery	
					1			
				₁₀₩	1			
			4	16 X	┥────			
					4		Fill material, wet, firm, gray, silty CLAY	
		109.2		17				
					1			
				18	1		No recovery	
			•	∣∵₩				
				I Å			1	
		NR		19				
]		1	
				20	1		1	Total depth 20'
GEN	D:		PID - Photo	/ \	Detector	r	HA - Hand Auger	
- Split			PP - Pock				WB - Wash Bore THE STRATIFICATION LINE	ES REPRESENT APPROXIMATE
	t CME Sai	nnler	HSA - Holk				BOUNDARY LINES BETWE	EEN SOIL AND ROCK TYPES: ACTUAL
	y Tube			Tube Sam	•		NX - Rock Core	ADUAL.

SC	S	EN	GIN	EE	R S		LOG OF BORING NO.: PB-11	SHEET NUMBER 1 of 1
8575 W 110th Street, Overland Park, Kansas 66210							DRILLING CONTRACTOR: SCS Engineers	WELL CONSTRUCTION DETAILS
CLIENT: City of Leavenworth							DRILLER: Whit Martin	MATERIAL:
PROJE			City Garage	Operation	S		DRILLING RIG: 54DT	DIAMETER: IN
	NUMBER:				-		DRILLING METHOD: Direct-push	WELL TOTAL DEPTH: FT BGS
							SAMPLING METHOD: Macrocore	SCREEN LENGTH: FT
		2109 Sc	outh 3rd Stre	ot			BORING DIAMETER: 2.5"	RISER LENGTH: FT
FROJECTE	OCATION.	2103 00		ει			WELL DIAMETER: 1"	TOP OF SCREEN: FT BGS
							WELL COMPLETION: 9/18/2020	BOTTOM OF SCREEN: FT BGS
PROJECT NUMBER: GEOLOGIST: Jeff Janzen							SURFACE ELEVATION: 776.98	SCREEN SLOT: IN
							TOC ELEVATION: 777.05	TOP OF FILTER PACK: FT BGS
START DATE: 9/18/2020 FINISH DATE: 9/18/2020 START TIME: 1350 FINISH TIME: 1407							WATER LEVEL: 8.14	TOP OF SEAL: FT BGS
START TIME:		1	FINISH TIME:			-	WATER ELEVATION: 768.91	TYPE OF SEAL:
SAMPLER TYPE	SAMPLE DEPTH	PID (PPM)	RECOVERY	DEPTH (FEET)	USCS CLASS	C I		TYPE OF FILTER PACK:
TIPE	DEFIN	(FFW)		(FEEI)	CLASS		SOIL DESCRIPTION AND DRILLING CONDITIONS	NOTES AND WELL CONSTRUCTION
		1.2		12			Fill material, gravel/sand backfill	_
		1.7		3			Fill material, damp, firm, black, silty CLAY	wood/brick debris 1.5'-3.5'
				4			No recovery	_
		8.9		56			Fill material, damp, firm, olive, silty CLAY	
		0.4		7			Fill material, damp, firm, dark brown, silty CLAY No recovery	brick debris at 6.5'
			-				No recovery	
		1.4		9			Fill material, damp, soft, mottled gray/medium brown/black, sandy silty CLAY	_
		0.7		11			Fill material, damp, firm, gray, silty CLAY	glass/gravel/wood debris 9.5'-12'
		6.7		12 13			Fill material, damp, firm, black, silty CLAY	-
			-	14			No recovery	
				15			Refusal at 14'	
				16				
				17 18				
				19				
LEGEND: PID - Photoionization Detector SS - Split Spoon PP - Pocket Penetrometer CS - 5 foot CME Sampler HSA - Hollow Stem Augers ST - Shelby Tube DT - Dual Tube Sampler				oionization et Penetro ow Stem A	ometer ugers	r	W/R - W/ash Bore	IES REPRESENT APPROXIMATE EEN SOIL AND ROCK TYPES: ACTUAL RADUAL.

ATTACHMENT B Photographic Log of Borings

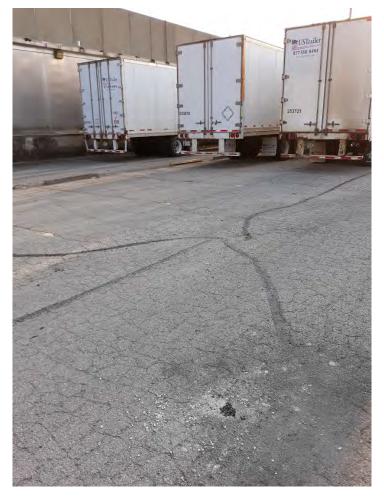
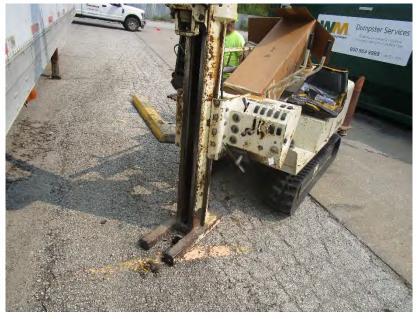

Former City Garage Operations 2109 South 3rd Street, Leavenworth, Kansas SCS Engineers Project #27220109.01

Photo 1: Installation of Boring PB-1A southwest of the Leavenworth Animal Control Building; view to north.

Photographer: Jeff Janzen

Date: 9/17/20


Photo 2: Abandoned Boring PB-1A; view to southwest.

Photographer: Jeff Janzen

Date: 9/21/20

Former City Garage Operations

Former City Garage Operations 2109 South 3rd Street, Leavenworth, Kansas SCS Engineers Project #27220109.01

Photo 3: Installation of Boring PB-2 along south boundary of the Subject Site; view to east.

Photographer: Jeff Janzen

Date: 9/17/20

Photo 4: Abandoned Boring PB-2; view to northeast.

Photographer: Whit Martin

Date: 9/23/20

Former City Garage Operations 2109 South 3rd Street, Leavenworth, Kansas SCS Engineers Project #27220109.01

Photo 5: Installation of Boring PB-3 south of the Leavenworth Animal Control Building; view to southeast.

Photographer: Jeff Janzen

Date: 9/18/20

Photo 6: Abandoned Boring PB-3; view to southeast.

Photographer: Jeff Janzen

Date: 9/21/20

Former City Garage Operations 2109 South 3rd Street, Leavenworth, Kansas SCS Engineers Project #27220109.01

Photo 7: Installation of Boring PB-4 in southwest corner of the Subject Site; view to southwest.

Photographer: Jeff Janzen

Date: 9/17/20

Photo 8: Abandoned Boring PB-4; view to west.

Photographer: Jeff Janzen

Date: 9/21/20

Former City Garage Operations


Former City Garage Operations 2109 South 3rd Street, Leavenworth, Kansas SCS Engineers Project #27220109.01

Photo 9: Installation of Boring PB-5 on west boundary of the Subject Site; view to north.

Photographer: Jeff Janzen

Date: 9/17/20

Photo 10: Abandoned Boring PB-5; view to northwest.

Photographer: Jeff Janzen

Date: 9/21/20

Former City Garage Operations

Former City Garage Operations 2109 South 3rd Street, Leavenworth, Kansas SCS Engineers Project #27220109.01

Photo 11: Installation of Boring PB-6 west of Leavenworth Animal Control Building; view to northwest.

Photographer: Jeff Janzen

Date: 9/17/20

Photo 12: Installation of Boring PB-7 east of dog runs; view to southwest.

Photographer: Jeff Janzen

Date: 9/18/20

Former City Garage Operations 2109 South 3rd Street, Leavenworth, Kansas SCS Engineers Project #27220109.01

Photo 13: Abandoned Boring PB-7; view to west.

Photographer: Jeff Janzen

Date: 9/21/20

Photo 14: Installation of Boring PB-8 north of Leavenworth Animal Control Building; view to southeast.

Photographer: Jeff Janzen

Date: 9/18/20

Former City Garage Operations 2109 South 3rd Street, Leavenworth, Kansas SCS Engineers Project #27220109.01

Photo 15: Abandoned Boring PB-8; view to south.

Photographer: Jeff Janzen

Date: 9/21/20

Photo 16: Installation of Boring PB-9 west of South 3rd Street along southern boundary of the Subject Site; view to southeast.

Photographer: Jeff Janzen

Date: 9/17/20

Former City Garage Operations 2109 South 3rd Street, Leavenworth, Kansas SCS Engineers Project #27220109.01

Photo 17: Abandoned Boring PB-9; view to southeast.

Photographer: Jeff Janzen

Date: 9/21/20

Photo 18: Installation of Boring PB-10 in northwest corner of the Subject Site; view to east.

Photographer: Jeff Janzen

Date: 9/18/20

Former City Garage Operations 2109 South 3rd Street, Leavenworth, Kansas SCS Engineers Project #27220109.01

Photo 19: Abandoned Boring PB-10; view to south.

Photographer: Jeff Janzen

Date: 9/21/20

Photo 20: Installation of Boring PB-11 in northeast corner of the Subject Site; view to west.

Photographer: Jeff Janzen

Date: 9/18/20

Former City Garage Operations 2109 South 3rd Street, Leavenworth, Kansas SCS Engineers Project #27220109.01

Photo 21: Abandoned Boring PB-11; view to southwest.

Photographer: Jeff Janzen

Date: 9/21/20

Photo 22: Abandoned Boring PB-1 north of Boring PB-1A; view to northwest.

Photographer: Jeff Janzen

Date: 9/21/20

Former City Garage Operations

Former City Garage Operations 2109 South 3rd Street, Leavenworth, Kansas SCS Engineers Project #27220109.01

Photo 23: Indoor air samples AS-1 and DUP collected in the employee cubicle area; view to north.

Photographer: Jeff Janzen

Date: 9/21/20

Photo 24: Indoor air sample AS-2 collected in storage hallway west of the kitchen; view to northwest.

Photographer: Jeff Janzen

Date: 9/21/20

Former City Garage Operations 2109 South 3rd Street, Leavenworth, Kansas SCS Engineers Project #27220109.01

Photo 25: Ambient air sample AS-AMB collected upwind to the south of the Leavenworth Animal Control Building; view to northeast.

Photographer: Jeff Janzen

Date: 9/21/20

ATTACHMENT C

KDHE Air Sampling Form – LAC Building

Kansas Department of Health and Environment Bureau of Environmental Remediation Indoor Air Sampling Form

Project Name: Former (ity h	Aragi	Sample Date: $9/21/2$						
Property ID:		Sampler: JAF Jum						
	Sample In	formation						
Sample Location:	Sample	e ID:	Canister Number:					
(1) Or early In hang	AS-AN	1B	012317					
(1) Outside da him (2) Office Anna	AS-1		006305					
(3) office Aren	Due		<i>R0</i> 8535					
(4) Kitchen Helling	A5-2		809218					
- I SJ	Environmenta	al Conditions	33					
Outdoor Temperature: Barometric Pressure: 30,26 Relative Humidity:								
Wind Speed: 3 nph Wind Direction: South - Southeast								
	Preliminary	Screening						
Instrumentation:	Calibration Date	:	Calibration Time:					
Location 1:	Re	eading 1:						
Location 2:	Re	Reading 2:						
Location 3:	Re	Reading 3:						
Location 4:	Re	eading 4:						
	Air Samp	ole Detail						
Start Time: Initial Vacu	i M	4						
(1) 0823 -28 mm	hy 167016	14-2 mm/b.	010048					
(2) 0819 - 27 mm	16 16 10	-2 mm/hg	016059					
(3) 0819 -27mm	12 1610	-2 mm/hs	005857					
(4) 0822 - 29 mm/h	16/2	-4 mm/h.	010054					
Note: This form is to be compl Page 3 of the form provides sp	Note: This form is to be completed for each residence involved in indoor air sampling activities. Page 3 of the form provides space for additional notes or comments.							

ATTACHMENT D

Pace National – Analytical Laboratory Reports

ANALYTICAL REPORT

September 30, 2020

SCS Engineers - KS

Sample Delivery Group:	L1264151
Samples Received:	09/19/2020
Project Number:	C4-052-73682
Description:	Former City Garage Opera
Site:	27220109.00
Report To:	Doug Dreiling
	8575 W. 110th Street
	Overland Park, KS 66210

Тс Ss Cn Śr *Q*c Gl A Sc

Entire Report Reviewed By:

Jubb land

Operations

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1264151 DATE/TIME: 09/30/20 13:24

PAGE: 1 of 98

TABLE OF CONTENTS

1

DE.	₩
	¹ Cp
	² Tc
	³ Ss
	⁴ Cn
	⁵ Sr
	⁶ Qc
	⁷ Gl
	⁸ Al
	⁹ Sc

Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
PB-1 2-4' L1264151-01	7
PB-1 9.5-11' L1264151-02	10
PB-2 1-3' L1264151-03	14
PB-2 12-14' L1264151-04	17
PB-9 2-4' L1264151-05	20
PB-9 9-11' L1264151-06	23
PB-3 1.5-3.5' L1264151-07	27
PB-3 9-11' L1264151-08	31
SOIL DUP L1264151-09	34
FIELD BLANK L1264151-10	38
EQUIP BLANK L1264151-11	42
TRIP BLANK L1264151-12	46
Qc: Quality Control Summary	48
Total Solids by Method 2540 G-2011	48
Mercury by Method 7470A	50
Mercury by Method 7471B	51
Metals (ICP) by Method 6010D	52
Volatile Petroleum Hydrocarbons by Method KS LRH	54
Volatile Organic Compounds (GC/MS) by Method 8260D	56
Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	67
Pesticides (GC) by Method 8081	69
Pesticides (GC) by Method 8081B	73
Polychlorinated Biphenyls (GC) by Method 8082	75
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	77
GI: Glossary of Terms	94
Al: Accreditations & Locations	95
Sc: Sample Chain of Custody	96

Cp: Cover Page

SDG: L1264151

DATE/TIME: 09/30/20 13:24

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

PB-1 2-4' L1264151-01 Solid			Collected by	Collected date/time 09/17/20 16:34	Received dat 09/19/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1549365	1	09/27/20 03:16	09/27/20 03:40	KDW	Mt. Juliet, TN
Mercury by Method 7471B	WG1547742	1	09/23/20 09:42	09/23/20 12:50	ABL	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1547617	1	09/23/20 06:27	09/24/20 12:54	TRB	Mt. Juliet, TN
/olatile Petroleum Hydrocarbons by Method KS LRH	WG1548508	1	09/17/20 16:34	09/24/20 12:07	BMB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260D	WG1549420	1	09/17/20 16:34	09/29/20 00:47	ADM	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260D	WG1550931	1	09/17/20 16:34	09/29/20 13:00	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	WG1548722	1	09/27/20 08:26	09/28/20 01:02	DMG	Mt. Juliet, TN
Pesticides (GC) by Method 8081B	WG1547939	1	09/23/20 21:44	09/24/20 03:27	TAB	Mt. Juliet, TN

PB-1 9.5-11' L1264151-02 Solid			Collected by	Collected date/time 09/17/20 16:52	Received date/time 09/19/20 09:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1549365	1	09/27/20 03:16	09/27/20 03:40	KDW	Mt. Juliet, TN
Mercury by Method 7471B	WG1547742	1	09/23/20 09:42	09/23/20 12:52	ABL	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1547617	1	09/23/20 06:27	09/24/20 12:57	TRB	Mt. Juliet, TN
Volatile Petroleum Hydrocarbons by Method KS LRH	WG1548508	1	09/17/20 16:52	09/24/20 12:40	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1549420	1	09/17/20 16:52	09/29/20 01:06	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1550931	1	09/17/20 16:52	09/29/20 13:19	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	WG1548722	1	09/27/20 08:26	09/29/20 10:21	JDG	Mt. Juliet, TN
Pesticides (GC) by Method 8081B	WG1547939	1	09/23/20 21:44	09/24/20 04:07	TAB	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1550290	2	09/28/20 18:38	09/29/20 16:33	AO	Mt. Juliet, TN

PB-2 1-3' L1264151-03 Solid

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1549365	1	09/27/20 03:16	09/27/20 03:40	KDW	Mt. Juliet, TN
Mercury by Method 7471B	WG1547742	1	09/23/20 09:42	09/23/20 12:42	ABL	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1547617	1	09/23/20 06:27	09/24/20 13:00	TRB	Mt. Juliet, TN
Volatile Petroleum Hydrocarbons by Method KS LRH	WG1548508	1	09/17/20 14:35	09/24/20 13:13	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1549420	1	09/17/20 14:35	09/29/20 01:25	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1550931	1	09/17/20 14:35	09/29/20 13:39	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	WG1548722	1	09/27/20 08:26	09/28/20 02:10	DMG	Mt. Juliet, TN
Pesticides (GC) by Method 8081	WG1548725	1	09/27/20 16:23	09/28/20 11:12	LEL	Mt. Juliet, TN
Polychlorinated Biphenyls (GC) by Method 8082	WG1548725	1	09/27/20 16:23	09/28/20 13:11	MTJ	Mt. Juliet, TN

PB-2 12-14' L1264151-04 Solid			Collected by	Collected date/time 09/17/20 15:20	Received da 09/19/20 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1549365	1	09/27/20 03:16	09/27/20 03:40	KDW	Mt. Juliet, TN
Mercury by Method 7471B	WG1547742	1	09/23/20 09:42	09/23/20 12:55	ABL	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1547617	1	09/23/20 06:27	09/24/20 13:02	TRB	Mt. Juliet, TN
Volatile Petroleum Hydrocarbons by Method KS LRH	WG1548508	1	09/17/20 15:20	09/24/20 13:46	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1549420	1	09/17/20 15:20	09/29/20 01:44	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1550931	1	09/17/20 15:20	09/29/20 13:58	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	WG1548722	1	09/27/20 08:26	09/28/20 01:25	DMG	Mt. Juliet, TN
Pesticides (GC) by Method 8081B	WG1547939	1	09/23/20 21:44	09/24/20 04:20	TAB	Mt. Juliet, TN

PROJECT: C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24

Collected by

09/19/20 09:00

Collected date/time Received date/time 09/17/20 14:35

SAMPLE SUMMARY

PB-9 2-4' L1264151-05 Solid			Collected by	Collected date/time 09/17/20 13:06	Received da 09/19/20 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1549365	1	09/27/20 03:16	09/27/20 03:40	KDW	Mt. Juliet, TN
Mercury by Method 7471B	WG1547742	1	09/23/20 09:42	09/23/20 12:57	ABL	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1547617	1	09/23/20 06:27	09/24/20 13:05	TRB	Mt. Juliet, TN
Volatile Petroleum Hydrocarbons by Method KS LRH	WG1548508	1	09/17/20 13:06	09/24/20 14:18	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1549420	1	09/17/20 13:06	09/29/20 02:03	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1550931	1	09/17/20 13:06	09/29/20 14:36	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	WG1548722	1	09/27/20 08:26	09/29/20 10:44	JDG	Mt. Juliet, TN
Pesticides (GC) by Method 8081	WG1548725	1	09/27/20 16:23	09/28/20 11:25	LEL	Mt. Juliet, TN
Polychlorinated Biphenyls (GC) by Method 8082	WG1548725	1	09/27/20 16:23	09/28/20 13:22	MTJ	Mt. Juliet, TN
PB-9 9-11' L1264151-06 Solid			Collected by	Collected date/time 09/17/20 13:32	Received da	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1549366	1	09/27/20 03:57	09/27/20 04:11	KDW	Mt. Juliet, TN
Mercury by Method 7471B	WG1547742	1	09/23/20 09:42	09/23/20 13:00	ABL	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1547617	1	09/23/20 06:27	09/24/20 13:07	TRB	Mt. Juliet, TN
Volatile Petroleum Hydrocarbons by Method KS LRH	WG1548508	1	09/17/20 13:32	09/24/20 14:51	BMB	Mt. Juliet, TN

Semi Volatile Organic Compounds	(GC/MS) by Method 8270C

Volatile Organic Compounds (GC/MS) by Method 8260D

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

PB-3 1.5-3.5'	L1264151-07	Solid
1 0 1.0 0.0		00110

Pesticides (GC) by Method 8081B

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1549366	1	09/27/20 03:57	09/27/20 04:11	KDW	Mt. Juliet, TN
Mercury by Method 7471B	WG1547742	1	09/23/20 09:42	09/23/20 13:07	ABL	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1547617	1	09/23/20 06:27	09/24/20 13:16	TRB	Mt. Juliet, TN
Volatile Petroleum Hydrocarbons by Method KS LRH	WG1548508	1	09/18/20 09:39	09/24/20 15:24	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1549420	1	09/18/20 09:39	09/29/20 02:41	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	WG1548722	1	09/27/20 08:26	09/29/20 13:23	JDG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	WG1548722	2	09/27/20 08:26	09/29/20 14:32	JDG	Mt. Juliet, TN
Pesticides (GC) by Method 8081	WG1548725	1	09/27/20 16:23	09/28/20 11:37	LEL	Mt. Juliet, TN
Polychlorinated Biphenyls (GC) by Method 8082	WG1548725	1	09/27/20 16:23	09/28/20 13:32	MTJ	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1550290	2	09/28/20 18:38	09/29/20 17:36	AO	Mt. Juliet, TN

WG1549420

WG1548722

WG1547939

WG1550290

1

1

1

1

09/17/20 13:32

09/27/20 08:26

09/23/20 21:44

09/28/20 18:38

Collected by

09/29/20 02:22

09/29/20 11:06

09/24/20 04:33

09/29/20 15:51

09/18/20 09:39

ADM

JDG

TAB

AO

09/19/20 09:00

Collected date/time Received date/time

Mt. Juliet, TN

Mt. Juliet, TN

Mt. Juliet, TN

Mt. Juliet, TN

			Collected by	Collected date/time	Received da	te/time
PB-3 9-11' L1264151-08 Solid				09/18/20 09:57	09/19/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1549366	1	09/27/20 03:57	09/27/20 04:11	KDW	Mt. Juliet, TN
Mercury by Method 7471B	WG1547742	1	09/23/20 09:42	09/23/20 13:10	ABL	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1547617	1	09/23/20 06:27	09/24/20 13:18	TRB	Mt. Juliet, TN
Volatile Petroleum Hydrocarbons by Method KS LRH	WG1548508	1	09/18/20 09:57	09/24/20 15:57	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1549420	1	09/18/20 09:57	09/29/20 03:00	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1550931	1	09/18/20 09:57	09/29/20 14:55	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	WG1548722	1	09/27/20 08:26	09/29/20 11:29	JDG	Mt. Juliet, TN
Pesticides (GC) by Method 8081B	WG1547939	1	09/23/20 21:44	09/24/20 04:46	TAB	Mt. Juliet, TN

PROJECT: C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24 PAGE: 4 of 98

SAMPLE SUMMARY

Collected by

Batch

WG1549366

WG1547742

WG1547617

WG1548508

WG1549420

WG1550931

WG1548722

WG1547939

WG1550290

Sc

	TANT		01121		
	Collected by	Collected date/time	Received da	te/time	
		09/17/20 00:00	09/19/20 09:	:00	¹ C
Dilution	Preparation	Analysis	Analyst	Location	
	date/time	date/time			2 T
1	09/27/20 03:57	09/27/20 04:11	KDW	Mt. Juliet, TN	
1	09/23/20 09:42	09/23/20 13:12	ABL	Mt. Juliet, TN	3_
1	09/23/20 06:27	09/24/20 13:21	TRB	Mt. Juliet, TN	ଁ Ss
1	09/17/20 00:00	09/24/20 16:30	BMB	Mt. Juliet, TN	
1	09/17/20 00:00	09/29/20 03:19	ADM	Mt. Juliet, TN	⁴ C
1	09/17/20 00:00	09/29/20 15:14	ACG	Mt. Juliet, TN	
1	09/27/20 08:26	09/29/20 09:58	JDG	Mt. Juliet, TN	5
1	09/23/20 21:44	09/24/20 05:00	TAB	Mt. Juliet, TN	S
1	09/28/20 18:38	09/29/20 15:30	AO	Mt. Juliet, TN	
					⁶ Q
	Collected by	Collected date/time	Received da	te/time	
		09/18/20 09:39	09/19/20 09:	:00	⁷ G
Dilution	Preparation	Analysis	Analyst	Location	
	date/time	date/time			⁸ A
1	09/21/20 08:13	09/21/20 20:49	TCT	Mt. Juliet, TN	A
1	09/27/20 23.47	09/28/20 18:31	FI	Mt Juliet TN	

Collected date/time Received date/time

09/19/20 09:00

09/18/20 09:57

FIELD BLANK L1264151-10 GW

Volatile Petroleum Hydrocarbons by Method KS LRH

Volatile Organic Compounds (GC/MS) by Method 8260D

Volatile Organic Compounds (GC/MS) by Method 8260D

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

SOIL DUP L1264151-09 Solid

Total Solids by Method 2540 G-2011

Mercury by Method 7471B

Metals (ICP) by Method 6010D

Pesticides (GC) by Method 8081B

Method

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Mercury by Method 7470A	WG1546149	1	09/21/20 08:13	09/21/20 20:49	TCT	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1547544	1	09/27/20 23:47	09/28/20 18:31	EL	Mt. Juliet, TN
Volatile Petroleum Hydrocarbons by Method KS LRH	WG1547271	1	09/22/20 21:07	09/22/20 21:07	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1549772	1	09/26/20 18:07	09/26/20 18:07	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	WG1546384	1	09/22/20 00:49	09/23/20 00:34	CAG	Mt. Juliet, TN
Pesticides (GC) by Method 8081	WG1547970	1	09/25/20 05:49	09/25/20 19:02	HMH	Mt. Juliet, TN
Polychlorinated Biphenyls (GC) by Method 8082	WG1547970	1	09/25/20 05:49	09/25/20 12:49	MTJ	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1548358	1	09/24/20 09:05	09/24/20 18:18	SHG	Mt. Juliet, TN

EQUIP BLANK L1264151-11 GW

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Mercury by Method 7470A	WG1546149	1	09/21/20 08:13	09/21/20 20:51	TCT	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1547544	1	09/27/20 23:47	09/28/20 18:34	EL	Mt. Juliet, TN
Volatile Petroleum Hydrocarbons by Method KS LRH	WG1547271	1	09/22/20 21:44	09/22/20 21:44	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1549772	1	09/26/20 18:27	09/26/20 18:27	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	WG1546384	1	09/22/20 00:49	09/23/20 00:57	CAG	Mt. Juliet, TN
Pesticides (GC) by Method 8081	WG1547970	1	09/25/20 05:49	09/25/20 19:15	HMH	Mt. Juliet, TN
Polychlorinated Biphenyls (GC) by Method 8082	WG1547970	1	09/25/20 05:49	09/25/20 13:03	MTJ	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1548605	1	09/24/20 22:29	09/25/20 16:43	AO	Mt. Juliet, TN

TRIP BLANK L1264151-12 GW			Collected by	Collected date/time 09/17/20 00:00	Received date 09/19/20 09:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1549772	1	09/26/20 18:46	09/26/20 18:46	ADM	Mt. Juliet, TN

ACCOUNT:
SCS Engineers - KS

PROJECT: C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24 PAGE: 5 of 98

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

SDG: L1264151 DATE/TIME: 09/30/20 13:24

PAGE: 6 of 98

SAMPLE RESULTS - 01

*

Ss

Cn

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	
Total Solids	82.1		1	09/27/2020 03:40	<u>WG1549365</u>		Тс

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	ND		0.0487	1	09/23/2020 12:50	WG1547742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	ND		2.44	1	09/24/2020 12:54	WG1547617
Barium	141		0.609	1	09/24/2020 12:54	WG1547617
Cadmium	ND		0.609	1	09/24/2020 12:54	WG1547617
Chromium	23.2		1.22	1	09/24/2020 12:54	WG1547617
Lead	15.7		0.609	1	09/24/2020 12:54	WG1547617
Selenium	ND		2.44	1	09/24/2020 12:54	WG1547617
Silver	ND		1.22	1	09/24/2020 12:54	WG1547617

Volatile Petroleum Hydrocarbons by Method KS LRH

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
LRH (C5-C8)	ND		7.41	1	09/24/2020 12:07	WG1548508
(S) 2,5-Dibromotoluene(FID)	82.8		70.0-130		09/24/2020 12:07	WG1548508

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	ND	JO	0.0758	1	09/29/2020 00:47	WG1549420	
Acrylonitrile	ND		0.0189	1	09/29/2020 00:47	WG1549420	
Benzene	ND		0.00152	1	09/29/2020 00:47	WG1549420	
Bromobenzene	ND		0.0189	1	09/29/2020 00:47	WG1549420	
Bromodichloromethane	ND		0.00379	1	09/29/2020 00:47	WG1549420	
Bromoform	ND		0.0379	1	09/29/2020 00:47	WG1549420	
Bromomethane	ND		0.0189	1	09/29/2020 00:47	WG1549420	
n-Butylbenzene	ND		0.0189	1	09/29/2020 00:47	WG1549420	
sec-Butylbenzene	ND		0.0189	1	09/29/2020 00:47	WG1549420	
tert-Butylbenzene	ND		0.00758	1	09/29/2020 00:47	WG1549420	
Carbon tetrachloride	ND		0.00758	1	09/29/2020 00:47	WG1549420	
Chlorobenzene	ND		0.00379	1	09/29/2020 00:47	WG1549420	
Chlorodibromomethane	ND		0.00379	1	09/29/2020 00:47	WG1549420	
Chloroethane	ND		0.00758	1	09/29/2020 00:47	WG1549420	
Chloroform	ND		0.00379	1	09/29/2020 00:47	WG1549420	
Chloromethane	ND		0.0189	1	09/29/2020 00:47	WG1549420	
2-Chlorotoluene	ND		0.00379	1	09/29/2020 00:47	WG1549420	
4-Chlorotoluene	ND		0.00758	1	09/29/2020 00:47	WG1549420	
1,2-Dibromo-3-Chloropropane	ND		0.0379	1	09/29/2020 00:47	WG1549420	
1,2-Dibromoethane	ND		0.00379	1	09/29/2020 00:47	WG1549420	
Dibromomethane	ND		0.00758	1	09/29/2020 00:47	WG1549420	
1,2-Dichlorobenzene	ND		0.00758	1	09/29/2020 00:47	WG1549420	
1,3-Dichlorobenzene	ND		0.00758	1	09/29/2020 00:47	WG1549420	
1,4-Dichlorobenzene	ND		0.00758	1	09/29/2020 00:47	WG1549420	
Dichlorodifluoromethane	ND		0.00379	1	09/29/2020 00:47	WG1549420	
1,1-Dichloroethane	ND		0.00379	1	09/29/2020 00:47	WG1549420	
1,2-Dichloroethane	ND		0.00379	1	09/29/2020 00:47	WG1549420	
ACCOUN	T:		PROJEC	CT:	SDG:	DATE/TIME:	PAG

SCS Engineers - KS

PROJECT: C4-052-73682 SDG: L1264151 DATE/TIME: 09/30/20 13:24

PAGE: 7 of 98

PB-1 2-4' Collected date/time: 09/17/20 16:34

SAMPLE RESULTS - 01

₩

Volatile Organic Compounds (GC/MS) by Method 8260D

Analyte	Result (dry) mg/kg	Qualifier	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	
I,1-Dichloroethene	ND		0.00379	1	09/29/2020 00:47	WG1549420	
cis-1,2-Dichloroethene	ND		0.00379	1	09/29/2020 00:47	WG1549420	
trans-1,2-Dichloroethene	ND		0.00758	1	09/29/2020 00:47	WG1549420	
1,2-Dichloropropane	ND		0.00758	1	09/29/2020 00:47	WG1549420	
I,1-Dichloropropene	ND		0.00379	1	09/29/2020 00:47	WG1549420	
1,3-Dichloropropane	ND		0.00758	1	09/29/2020 00:47	WG1549420	
cis-1,3-Dichloropropene	ND		0.00379	1	09/29/2020 00:47	WG1549420	
trans-1,3-Dichloropropene	ND		0.00758	1	09/29/2020 00:47	WG1549420	
2,2-Dichloropropane	ND		0.00379	1	09/29/2020 00:47	WG1549420	
Di-isopropyl ether	ND		0.00152	1	09/29/2020 00:47	WG1549420	
Ethylbenzene	ND		0.00379	1	09/29/2020 00:47	WG1549420	
Hexachloro-1,3-butadiene	ND		0.0379	1	09/29/2020 00:47	WG1549420	
sopropylbenzene	ND		0.00379	1	09/29/2020 00:47	WG1549420	
p-lsopropyltoluene	ND		0.00758	1	09/29/2020 00:47	WG1549420	
2-Butanone (MEK)	ND		0.152	1	09/29/2020 13:00	WG1550931	
Methylene Chloride	ND		0.0379	1	09/29/2020 00:47	WG1549420	
1-Methyl-2-pentanone (MIBK)	ND		0.0379	1	09/29/2020 00:47	WG1549420	
Methyl tert-butyl ether	ND		0.00152	1	09/29/2020 00:47	WG1549420	
Vaphthalene	ND		0.0189	1	09/29/2020 00:47	WG1549420	
n-Propylbenzene	ND		0.00758	1	09/29/2020 00:47	WG1549420	
Styrene	ND		0.0189	1	09/29/2020 00:47	WG1549420	
I,1,1,2-Tetrachloroethane	ND		0.00379	1	09/29/2020 00:47	WG1549420	
,1,2,2-Tetrachloroethane	ND		0.00379	1	09/29/2020 00:47	WG1549420	
1,1,2-Trichlorotrifluoroethane	ND		0.00379	1	09/29/2020 00:47	WG1549420	
Fetrachloroethene	ND		0.00379	1	09/29/2020 00:47	WG1549420	
Toluene	ND		0.00758	1	09/29/2020 00:47	WG1549420	
I,2,3-Trichlorobenzene	ND	<u>JO</u>	0.0189	1	09/29/2020 00:47	WG1549420	
,2,4-Trichlorobenzene	ND	<u> </u>	0.0189	1	09/29/2020 00:47	WG1549420	
I,1,1-Trichloroethane	ND		0.00379	1	09/29/2020 00:47	WG1549420	
I,1,2-Trichloroethane	ND		0.00379	1	09/29/2020 00:47	WG1549420	
Trichloroethene	ND		0.00152	1	09/29/2020 00:47	WG1549420	
Frichlorofluoromethane	ND		0.00132	1	09/29/2020 00:47	WG1549420	
I,2,3-Trichloropropane	ND		0.0189	1	09/29/2020 00:47	WG1549420	
I,2,4-Trimethylbenzene	ND		0.00758	1	09/29/2020 00:47	WG1549420	
I,2,3-Trimethylbenzene	ND		0.00758	1	09/29/2020 00:47	WG1549420	
1,3,5-Trimethylbenzene	ND		0.00758	1	09/29/2020 00:47	WG1549420	
Vinyl chloride	ND		0.00738	1	09/29/2020 00:47	WG1549420	
Kylenes, Total	ND		0.00985	1	09/29/2020 00:47	WG1549420	
(S) Toluene-d8	110		75.0-131	I	09/29/2020 00:47	WG1549420 WG1549420	
(S) Toluene-d8	100		75.0-131		09/29/2020 00.47	WG1550931	
(S) 4-Bromofluorobenzene	100		67.0-138		09/29/2020 13:00	WG1550931 WG1549420	
(S) 4-Bromofluorobenzene	104 110		67.0-138		09/29/2020 00.47	WG1550931	
(S) 1,2-Dichloroethane-d4	93.2		70.0-130		09/29/2020 13:00	WG1550931 WG1549420	
(S) 1,2-Dichloroethane-d4	93.2 104		70.0-130		09/29/2020 00:47	WG1550931	

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
MRH (C9-C18)	ND		12.2	1	09/28/2020 01:02	WG1548722
HRH (C19-C35)	ND		12.2	1	09/28/2020 01:02	WG1548722
(S) 1-Chloro-octadecane	81.6		40.0-140		09/28/2020 01:02	WG1548722

PROJECT: C4-052-73682 SDG: L1264151 DATE/TIME: 09/30/20 13:24

PAGE: 8 of 98

SAMPLE RESULTS - 01

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Aldrin	ND		0.0244	1	09/24/2020 03:27	WG1547939	
Alpha BHC	ND		0.0244	1	09/24/2020 03:27	WG1547939	
Beta BHC	ND		0.0244	1	09/24/2020 03:27	WG1547939	
Delta BHC	ND		0.0244	1	09/24/2020 03:27	WG1547939	
Gamma BHC	ND		0.0244	1	09/24/2020 03:27	WG1547939	
Chlordane	ND		0.365	1	09/24/2020 03:27	WG1547939	
4,4-DDD	ND		0.0244	1	09/24/2020 03:27	WG1547939	
4,4-DDE	ND		0.0244	1	09/24/2020 03:27	WG1547939	
4,4-DDT	ND		0.0244	1	09/24/2020 03:27	WG1547939	
Dieldrin	ND		0.0244	1	09/24/2020 03:27	WG1547939	
Endosulfan I	ND		0.0244	1	09/24/2020 03:27	WG1547939	
Endosulfan II	ND		0.0244	1	09/24/2020 03:27	WG1547939	
Endosulfan sulfate	ND		0.0244	1	09/24/2020 03:27	WG1547939	
Endrin	ND		0.0244	1	09/24/2020 03:27	WG1547939	
Endrin aldehyde	ND		0.0244	1	09/24/2020 03:27	WG1547939	
Endrin ketone	ND		0.0244	1	09/24/2020 03:27	WG1547939	
Hexachlorobenzene	ND		0.0244	1	09/24/2020 03:27	WG1547939	
Heptachlor	ND		0.0244	1	09/24/2020 03:27	WG1547939	
Heptachlor epoxide	ND		0.0244	1	09/24/2020 03:27	WG1547939	
Methoxychlor	ND		0.0244	1	09/24/2020 03:27	WG1547939	
Toxaphene	ND		0.487	1	09/24/2020 03:27	WG1547939	
(S) Decachlorobiphenyl	67.1		10.0-135		09/24/2020 03:27	WG1547939	
(S) Tetrachloro-m-xylene	71.8		10.0-139		09/24/2020 03:27	WG1547939	

SDG: L1264151 DATE/TIME: 09/30/20 13:24

SAMPLE RESULTS - 02

Ss

Cn

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	_	Ср
Analyte	%			date / time		ſ	2
Total Solids	80.6		1	09/27/2020 03:40	WG1549365		Тс

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	ND		0.0496	1	09/23/2020 12:52	WG1547742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	ND		2.48	1	09/24/2020 12:57	WG1547617
Barium	108		0.620	1	09/24/2020 12:57	WG1547617
Cadmium	ND		0.620	1	09/24/2020 12:57	WG1547617
Chromium	19.2		1.24	1	09/24/2020 12:57	WG1547617
Lead	31.2		0.620	1	09/24/2020 12:57	WG1547617
Selenium	ND		2.48	1	09/24/2020 12:57	WG1547617
Silver	ND		1.24	1	09/24/2020 12:57	WG1547617

Volatile Petroleum Hydrocarbons by Method KS LRH

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
LRH (C5-C8)	ND		7.70	1	09/24/2020 12:40	WG1548508
(S) 2,5-Dibromotoluene(FID)	85.9		70.0-130		09/24/2020 12:40	WG1548508

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Acetone	ND	JO	0.0768	1	09/29/2020 01:06	WG1549420
Acrylonitrile	ND		0.0192	1	09/29/2020 01:06	WG1549420
Benzene	0.0111		0.00154	1	09/29/2020 01:06	WG1549420
Bromobenzene	ND		0.0192	1	09/29/2020 01:06	WG1549420
Bromodichloromethane	ND		0.00384	1	09/29/2020 01:06	WG1549420
Bromoform	ND		0.0384	1	09/29/2020 01:06	WG1549420
Bromomethane	ND		0.0192	1	09/29/2020 01:06	WG1549420
n-Butylbenzene	ND		0.0192	1	09/29/2020 01:06	WG1549420
sec-Butylbenzene	ND		0.0192	1	09/29/2020 01:06	WG1549420
tert-Butylbenzene	ND		0.00768	1	09/29/2020 01:06	WG1549420
Carbon tetrachloride	ND		0.00768	1	09/29/2020 01:06	WG1549420
Chlorobenzene	ND		0.00384	1	09/29/2020 01:06	WG1549420
Chlorodibromomethane	ND		0.00384	1	09/29/2020 01:06	WG1549420
Chloroethane	ND		0.00768	1	09/29/2020 01:06	WG1549420
Chloroform	ND		0.00384	1	09/29/2020 01:06	WG1549420
Chloromethane	ND		0.0192	1	09/29/2020 01:06	WG1549420
2-Chlorotoluene	ND		0.00384	1	09/29/2020 01:06	WG1549420
4-Chlorotoluene	ND		0.00768	1	09/29/2020 01:06	WG1549420
1,2-Dibromo-3-Chloropropane	ND		0.0384	1	09/29/2020 01:06	WG1549420
1,2-Dibromoethane	ND		0.00384	1	09/29/2020 01:06	WG1549420
Dibromomethane	ND		0.00768	1	09/29/2020 01:06	WG1549420
1,2-Dichlorobenzene	ND		0.00768	1	09/29/2020 01:06	WG1549420
1,3-Dichlorobenzene	ND		0.00768	1	09/29/2020 01:06	WG1549420
1,4-Dichlorobenzene	ND		0.00768	1	09/29/2020 01:06	WG1549420
Dichlorodifluoromethane	ND		0.00384	1	09/29/2020 01:06	WG1549420
1,1-Dichloroethane	ND		0.00384	1	09/29/2020 01:06	WG1549420
1,2-Dichloroethane	ND		0.00384	1	09/29/2020 01:06	WG1549420
ACCOUN	T:		PROJEC	:T:	SDG:	DATE/TIME:

SCS Engineers - KS

PROJECT: C4-052-73682 SDG: L1264151 DATE/TIME: 09/30/20 13:24

10 of 98

PB-1 9.5-11' Collected date/time: 09/17/20 16:52

SAMPLE RESULTS - 02 L1264151

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	Ct
Analyte	mg/kg		mg/kg		date / time		
1,1-Dichloroethene	ND		0.00384	1	09/29/2020 01:06	WG1549420	
cis-1,2-Dichloroethene	ND		0.00384	1	09/29/2020 01:06	WG1549420	
trans-1,2-Dichloroethene	ND		0.00768	1	09/29/2020 01:06	WG1549420	3
1,2-Dichloropropane	ND		0.00768	1	09/29/2020 01:06	WG1549420	ໍSs
1,1-Dichloropropene	ND		0.00384	1	09/29/2020 01:06	WG1549420	
1,3-Dichloropropane	ND		0.00768	1	09/29/2020 01:06	WG1549420	⁴ Cr
cis-1,3-Dichloropropene	ND		0.00384	1	09/29/2020 01:06	WG1549420	01
trans-1,3-Dichloropropene	ND		0.00768	1	09/29/2020 01:06	WG1549420	5_
2,2-Dichloropropane	ND		0.00384	1	09/29/2020 01:06	WG1549420	ຶSr
Di-isopropyl ether	ND		0.00154	1	09/29/2020 01:06	WG1549420	
Ethylbenzene	ND		0.00384	1	09/29/2020 01:06	WG1549420	⁶ Q(
Hexachloro-1,3-butadiene	ND		0.0384	1	09/29/2020 01:06	WG1549420	
Isopropylbenzene	0.00489		0.00384	1	09/29/2020 01:06	WG1549420	7
p-Isopropyltoluene	ND		0.00768	1	09/29/2020 01:06	WG1549420	΄ GΙ
2-Butanone (MEK)	ND		0.154	1	09/29/2020 13:19	WG1550931	
Methylene Chloride	ND		0.0384	1	09/29/2020 01:06	WG1549420	⁸ Al
4-Methyl-2-pentanone (MIBK)	ND		0.0384	1	09/29/2020 01:06	WG1549420	
Methyl tert-butyl ether	ND		0.00154	1	09/29/2020 01:06	WG1549420	9
Naphthalene	0.0254		0.0192	1	09/29/2020 01:06	WG1549420	[°] Sc
n-Propylbenzene	0.00911		0.00768	1	09/29/2020 01:06	WG1549420	
Styrene	ND		0.0192	1	09/29/2020 01:06	WG1549420	
1,1,1,2-Tetrachloroethane	ND		0.00384	1	09/29/2020 01:06	WG1549420	
1,1,2,2-Tetrachloroethane	ND		0.00384	1	09/29/2020 01:06	WG1549420	
1,1,2-Trichlorotrifluoroethane	ND		0.00384	1	09/29/2020 01:06	WG1549420	
Tetrachloroethene	ND		0.00384	1	09/29/2020 01:06	WG1549420	
Toluene	ND		0.00768	1	09/29/2020 01:06	WG1549420	
1,2,3-Trichlorobenzene	ND	JO	0.0192	1	09/29/2020 01:06	WG1549420	
1,2,4-Trichlorobenzene	ND	_	0.0192	1	09/29/2020 01:06	WG1549420	
1,1,1-Trichloroethane	ND		0.00384	1	09/29/2020 01:06	WG1549420	
1,1,2-Trichloroethane	ND		0.00384	1	09/29/2020 01:06	WG1549420	
Trichloroethene	ND		0.00154	1	09/29/2020 01:06	WG1549420	
Trichlorofluoromethane	ND		0.00384	1	09/29/2020 01:06	WG1549420	
1,2,3-Trichloropropane	ND		0.0192	1	09/29/2020 01:06	WG1549420	
1,2,4-Trimethylbenzene	ND		0.00768	1	09/29/2020 01:06	WG1549420	
1,2,3-Trimethylbenzene	ND		0.00768	1	09/29/2020 01:06	WG1549420	
1,3,5-Trimethylbenzene	ND		0.00768	1	09/29/2020 01:06	WG1549420	
Vinyl chloride	ND		0.00384	1	09/29/2020 01:06	WG1549420	
Xylenes, Total	ND		0.00999	1	09/29/2020 01:06	WG1549420	
(S) Toluene-d8	99.3		75.0-131		09/29/2020 01:06	WG1549420	
(S) Toluene-d8	99.2		75.0-131		09/29/2020 13:19	WG1550931	
(S) 4-Bromofluorobenzene	98.1		67.0-138		09/29/2020 01:06	WG1549420	
(S) 4-Bromofluorobenzene	106		67.0-138		09/29/2020 13:19	WG1550931	
(S) 1,2-Dichloroethane-d4	92.6		70.0-130		09/29/2020 01:06	WG1549420	
(S) 1,2-Dichloroethane-d4	97.8		70.0-130		09/29/2020 13:19	WG1550931	

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
MRH (C9-C18)	ND		12.4	1	09/29/2020 10:21	WG1548722
HRH (C19-C35)	18.6	B	12.4	1	09/29/2020 10:21	WG1548722
(S) 1-Chloro-octadecane	93.1		40.0-140		09/29/2020 10:21	WG1548722

PROJECT: C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24 PAGE: 11 of 98

SAMPLE RESULTS - 02 L1264151

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Aldrin	ND		0.0248	1	09/24/2020 04:07	WG1547939	
Alpha BHC	ND		0.0248	1	09/24/2020 04:07	WG1547939	
Beta BHC	ND		0.0248	1	09/24/2020 04:07	<u>WG1547939</u>	
Delta BHC	ND		0.0248	1	09/24/2020 04:07	<u>WG1547939</u>	
Gamma BHC	ND		0.0248	1	09/24/2020 04:07	WG1547939	
Chlordane	ND		0.372	1	09/24/2020 04:07	<u>WG1547939</u>	
4,4-DDD	ND		0.0248	1	09/24/2020 04:07	WG1547939	
4,4-DDE	ND		0.0248	1	09/24/2020 04:07	<u>WG1547939</u>	
4,4-DDT	ND		0.0248	1	09/24/2020 04:07	WG1547939	
Dieldrin	ND		0.0248	1	09/24/2020 04:07	WG1547939	
Endosulfan I	ND		0.0248	1	09/24/2020 04:07	WG1547939	
Endosulfan II	ND		0.0248	1	09/24/2020 04:07	WG1547939	
Endosulfan sulfate	ND		0.0248	1	09/24/2020 04:07	WG1547939	
Endrin	ND		0.0248	1	09/24/2020 04:07	WG1547939	
Endrin aldehyde	ND		0.0248	1	09/24/2020 04:07	WG1547939	
Endrin ketone	ND		0.0248	1	09/24/2020 04:07	WG1547939	
Hexachlorobenzene	ND		0.0248	1	09/24/2020 04:07	WG1547939	
Heptachlor	ND		0.0248	1	09/24/2020 04:07	WG1547939	
Heptachlor epoxide	ND		0.0248	1	09/24/2020 04:07	WG1547939	
Methoxychlor	ND		0.0248	1	09/24/2020 04:07	WG1547939	
Toxaphene	ND		0.496	1	09/24/2020 04:07	WG1547939	
(S) Decachlorobiphenyl	41.7		10.0-135		09/24/2020 04:07	WG1547939	
(S) Tetrachloro-m-xylene	42.6		10.0-139		09/24/2020 04:07	WG1547939	

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acenaphthene	0.274	<u>J5</u>	0.0826	2	09/29/2020 16:33	<u>WG1550290</u>	
Acenaphthylene	ND		0.0826	2	09/29/2020 16:33	<u>WG1550290</u>	
Anthracene	0.133	<u>J3</u>	0.0826	2	09/29/2020 16:33	<u>WG1550290</u>	
Benzidine	ND		4.14	2	09/29/2020 16:33	<u>WG1550290</u>	
Benzo(a)anthracene	0.133	<u>J3 J5</u>	0.0826	2	09/29/2020 16:33	<u>WG1550290</u>	
Benzo(b)fluoranthene	0.148	<u>J3 J5</u>	0.0826	2	09/29/2020 16:33	<u>WG1550290</u>	
Benzo(k)fluoranthene	ND		0.0826	2	09/29/2020 16:33	WG1550290	
Benzo(g,h,i)perylene	ND		0.0826	2	09/29/2020 16:33	<u>WG1550290</u>	
Benzo(a)pyrene	0.108	<u>J3 J5</u>	0.0826	2	09/29/2020 16:33	WG1550290	
Bis(2-chlorethoxy)methane	ND		0.826	2	09/29/2020 16:33	<u>WG1550290</u>	
Bis(2-chloroethyl)ether	ND		0.826	2	09/29/2020 16:33	<u>WG1550290</u>	
2,2-Oxybis(1-Chloropropane)	ND		0.826	2	09/29/2020 16:33	<u>WG1550290</u>	
4-Bromophenyl-phenylether	ND		0.826	2	09/29/2020 16:33	<u>WG1550290</u>	
2-Chloronaphthalene	ND		0.0826	2	09/29/2020 16:33	<u>WG1550290</u>	
4-Chlorophenyl-phenylether	ND		0.826	2	09/29/2020 16:33	WG1550290	
Chrysene	0.141	<u>J3 J5</u>	0.0826	2	09/29/2020 16:33	WG1550290	
Dibenz(a,h)anthracene	ND		0.0826	2	09/29/2020 16:33	<u>WG1550290</u>	
3,3-Dichlorobenzidine	ND		0.826	2	09/29/2020 16:33	WG1550290	
2,4-Dinitrotoluene	ND		0.826	2	09/29/2020 16:33	<u>WG1550290</u>	
2,6-Dinitrotoluene	ND		0.826	2	09/29/2020 16:33	WG1550290	
Fluoranthene	0.401	<u>J3 J5</u>	0.0826	2	09/29/2020 16:33	<u>WG1550290</u>	
Fluorene	0.243	<u>J5</u>	0.0826	2	09/29/2020 16:33	<u>WG1550290</u>	
Hexachlorobenzene	ND		0.826	2	09/29/2020 16:33	WG1550290	
Hexachloro-1,3-butadiene	ND		0.826	2	09/29/2020 16:33	WG1550290	
Hexachlorocyclopentadiene	ND	<u>J6</u>	0.826	2	09/29/2020 16:33	WG1550290	
Hexachloroethane	ND		0.826	2	09/29/2020 16:33	WG1550290	
Indeno(1,2,3-cd)pyrene	ND		0.0826	2	09/29/2020 16:33	WG1550290	
Isophorone	ND		0.826	2	09/29/2020 16:33	WG1550290	
Naphthalene	0.135		0.0826	2	09/29/2020 16:33	WG1550290	
ACCOUN	NT:		PROJEC	T:	SDG:	DATE/TIME:	PAG
SCS Enginee	ers - KS		C4-052-73	682	L1264151	09/30/20 13:24	12 of

GE: 12 of 98

PB-1 9.5-11' Collected date/time: 09/17/20 16:52

SAMPLE RESULTS - 02

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Nitrobenzene	ND		0.826	2	09/29/2020 16:33	<u>WG1550290</u>	2_
n-Nitrosodimethylamine	ND		0.826	2	09/29/2020 16:33	WG1550290	L
n-Nitrosodiphenylamine	ND		0.826	2	09/29/2020 16:33	<u>WG1550290</u>	3
n-Nitrosodi-n-propylamine	ND		0.826	2	09/29/2020 16:33	WG1550290	
Phenanthrene	0.581	<u>J3 J5</u>	0.0826	2	09/29/2020 16:33	<u>WG1550290</u>	
Benzylbutyl phthalate	ND		0.826	2	09/29/2020 16:33	WG1550290	4
Bis(2-ethylhexyl)phthalate	ND	<u>J3 J5</u>	0.826	2	09/29/2020 16:33	<u>WG1550290</u>	
Di-n-butyl phthalate	ND		0.826	2	09/29/2020 16:33	WG1550290	5
Diethyl phthalate	ND		0.826	2	09/29/2020 16:33	<u>WG1550290</u>	5
Dimethyl phthalate	ND		0.826	2	09/29/2020 16:33	WG1550290	
Di-n-octyl phthalate	ND		0.826	2	09/29/2020 16:33	<u>WG1550290</u>	6
Pyrene	0.304	<u>J3 J5</u>	0.0826	2	09/29/2020 16:33	WG1550290	
1,2,4-Trichlorobenzene	ND		0.826	2	09/29/2020 16:33	<u>WG1550290</u>	7
4-Chloro-3-methylphenol	ND		0.826	2	09/29/2020 16:33	<u>WG1550290</u>	ľ
2-Chlorophenol	ND		0.826	2	09/29/2020 16:33	<u>WG1550290</u>	
2,4-Dichlorophenol	ND		0.826	2	09/29/2020 16:33	WG1550290	8
2,4-Dimethylphenol	ND		0.826	2	09/29/2020 16:33	<u>WG1550290</u>	
4,6-Dinitro-2-methylphenol	ND		0.826	2	09/29/2020 16:33	<u>WG1550290</u>	9
2,4-Dinitrophenol	ND	<u>J6</u>	0.826	2	09/29/2020 16:33	<u>WG1550290</u>	
2-Nitrophenol	ND		0.826	2	09/29/2020 16:33	<u>WG1550290</u>	
4-Nitrophenol	ND		0.826	2	09/29/2020 16:33	<u>WG1550290</u>	
Pentachlorophenol	ND		0.826	2	09/29/2020 16:33	<u>WG1550290</u>	
Phenol	ND		0.826	2	09/29/2020 16:33	<u>WG1550290</u>	
2,4,6-Trichlorophenol	ND		0.826	2	09/29/2020 16:33	<u>WG1550290</u>	
(S) Nitrobenzene-d5	46.6		10.0-122		09/29/2020 16:33	<u>WG1550290</u>	
(S) 2-Fluorobiphenyl	58.1		15.0-120		09/29/2020 16:33	WG1550290	
(S) p-Terphenyl-d14	73.9		10.0-120		09/29/2020 16:33	<u>WG1550290</u>	
(S) Phenol-d5	51.9		10.0-120		09/29/2020 16:33	WG1550290	
(S) 2-Fluorophenol	55.4		12.0-120		09/29/2020 16:33	<u>WG1550290</u>	
(S) 2,4,6-Tribromophenol	82.5		10.0-127		09/29/2020 16:33	<u>WG1550290</u>	

SDG: L1264151 DATE/TIME: 09/30/20 13:24

Collected date/time: 09/17/20 14:35

SAMPLE RESULTS - 03 L1264151

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		(
Analyte	%			date / time			2
Total Solids	79.7		1	09/27/2020 03:40	WG1549365		2
Mercury by Met	nod 7471B						3
	Result (dry)	Qualifier	RDL (c	dry) Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	I	date / time		4
Mercury	ND		0.050	2 1	09/23/2020 12:42	WG1547742	

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		4
Mercury	ND		0.0502	1	09/23/2020 12:42	WG1547742	

Metals (ICP) by Method 6010D

	0100					
Metals (ICP) by Method 6	010D					⁵Sr
	Result (dry) Qualifier	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg	mg/kg		date / time		ČQ
Arsenic	ND	2.51	1	09/24/2020 13:00	WG1547617	
Barium	195	0.627	1	09/24/2020 13:00	WG1547617	⁷ G
Cadmium	ND	0.627	1	09/24/2020 13:00	WG1547617	
Chromium	24.2	1.25	1	09/24/2020 13:00	WG1547617	8
Lead	21.4	0.627	1	09/24/2020 13:00	WG1547617	ГА
Selenium	ND	2.51	1	09/24/2020 13:00	WG1547617	
Silver	ND	1.25	1	09/24/2020 13:00	WG1547617	⁹ S

Volatile Petroleum Hydrocarbons by Method KS LRH

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
LRH (C5-C8)	ND		7.88	1	09/24/2020 13:13	WG1548508
(S) 2,5-Dibromotoluene(FID)	84.1		70.0-130		09/24/2020 13:13	WG1548508

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	ND	JO	0.0791	1	09/29/2020 01:25	WG1549420	
Acrylonitrile	ND		0.0198	1	09/29/2020 01:25	WG1549420	
Benzene	ND		0.00158	1	09/29/2020 01:25	WG1549420	
Bromobenzene	ND		0.0198	1	09/29/2020 01:25	WG1549420	
Bromodichloromethane	ND		0.00395	1	09/29/2020 01:25	WG1549420	
Bromoform	ND		0.0395	1	09/29/2020 01:25	WG1549420	
Bromomethane	ND		0.0198	1	09/29/2020 01:25	WG1549420	
n-Butylbenzene	ND		0.0198	1	09/29/2020 01:25	WG1549420	
sec-Butylbenzene	ND		0.0198	1	09/29/2020 01:25	WG1549420	
tert-Butylbenzene	ND		0.00791	1	09/29/2020 01:25	WG1549420	
Carbon tetrachloride	ND		0.00791	1	09/29/2020 01:25	WG1549420	
Chlorobenzene	ND		0.00395	1	09/29/2020 01:25	WG1549420	
Chlorodibromomethane	ND		0.00395	1	09/29/2020 01:25	WG1549420	
Chloroethane	ND		0.00791	1	09/29/2020 01:25	WG1549420	
Chloroform	ND		0.00395	1	09/29/2020 01:25	WG1549420	
Chloromethane	ND		0.0198	1	09/29/2020 01:25	WG1549420	
2-Chlorotoluene	ND		0.00395	1	09/29/2020 01:25	WG1549420	
4-Chlorotoluene	ND		0.00791	1	09/29/2020 01:25	WG1549420	
1,2-Dibromo-3-Chloropropane	ND		0.0395	1	09/29/2020 01:25	WG1549420	
1,2-Dibromoethane	ND		0.00395	1	09/29/2020 01:25	WG1549420	
Dibromomethane	ND		0.00791	1	09/29/2020 01:25	WG1549420	
1,2-Dichlorobenzene	ND		0.00791	1	09/29/2020 01:25	WG1549420	
1,3-Dichlorobenzene	ND		0.00791	1	09/29/2020 01:25	WG1549420	
1,4-Dichlorobenzene	ND		0.00791	1	09/29/2020 01:25	WG1549420	
Dichlorodifluoromethane	ND		0.00395	1	09/29/2020 01:25	WG1549420	
1,1-Dichloroethane	ND		0.00395	1	09/29/2020 01:25	WG1549420	
1,2-Dichloroethane	ND		0.00395	1	09/29/2020 01:25	<u>WG1549420</u>	
ACCOUN	T:		PROJEC	:T:	SDG:	DATE/TIME:	PAG

SCS Engineers - KS

PROJECT: C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24

SAMPLE RESULTS - 03 L1264151

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	Ct
Analyte	mg/kg		mg/kg		date / time		
1,1-Dichloroethene	ND		0.00395	1	09/29/2020 01:25	<u>WG1549420</u>	
cis-1,2-Dichloroethene	ND		0.00395	1	09/29/2020 01:25	WG1549420	
trans-1,2-Dichloroethene	ND		0.00791	1	09/29/2020 01:25	<u>WG1549420</u>	3
1,2-Dichloropropane	ND		0.00791	1	09/29/2020 01:25	WG1549420	ິSs
1,1-Dichloropropene	ND		0.00395	1	09/29/2020 01:25	WG1549420	
1,3-Dichloropropane	ND		0.00791	1	09/29/2020 01:25	WG1549420	
cis-1,3-Dichloropropene	ND		0.00395	1	09/29/2020 01:25	<u>WG1549420</u>	
trans-1,3-Dichloropropene	ND		0.00791	1	09/29/2020 01:25	<u>WG1549420</u>	5
2,2-Dichloropropane	ND		0.00395	1	09/29/2020 01:25	<u>WG1549420</u>	۲Sr
Di-isopropyl ether	ND		0.00158	1	09/29/2020 01:25	WG1549420	
Ethylbenzene	ND		0.00395	1	09/29/2020 01:25	<u>WG1549420</u>	⁶ Q
Hexachloro-1,3-butadiene	ND		0.0395	1	09/29/2020 01:25	<u>WG1549420</u>	
Isopropylbenzene	ND		0.00395	1	09/29/2020 01:25	<u>WG1549420</u>	7
p-Isopropyltoluene	ND		0.00791	1	09/29/2020 01:25	<u>WG1549420</u>	Í GI
2-Butanone (MEK)	ND		0.158	1	09/29/2020 13:39	WG1550931	
Methylene Chloride	ND		0.0395	1	09/29/2020 01:25	WG1549420	⁸ Al
4-Methyl-2-pentanone (MIBK)	ND		0.0395	1	09/29/2020 01:25	WG1549420	
Methyl tert-butyl ether	ND		0.00158	1	09/29/2020 01:25	WG1549420	9
Naphthalene	ND		0.0198	1	09/29/2020 01:25	WG1549420	ິSc
n-Propylbenzene	ND		0.00791	1	09/29/2020 01:25	WG1549420	
Styrene	ND		0.0198	1	09/29/2020 01:25	WG1549420	
1,1,1,2-Tetrachloroethane	ND		0.00395	1	09/29/2020 01:25	WG1549420	
1,1,2,2-Tetrachloroethane	ND		0.00395	1	09/29/2020 01:25	WG1549420	
1,1,2-Trichlorotrifluoroethane	ND		0.00395	1	09/29/2020 01:25	WG1549420	
Tetrachloroethene	ND		0.00395	1	09/29/2020 01:25	WG1549420	
Toluene	ND		0.00791	1	09/29/2020 01:25	WG1549420	
1,2,3-Trichlorobenzene	ND	JO	0.0198	1	09/29/2020 01:25	WG1549420	
1,2,4-Trichlorobenzene	ND	_	0.0198	1	09/29/2020 01:25	WG1549420	
1,1,1-Trichloroethane	ND		0.00395	1	09/29/2020 01:25	WG1549420	
1,1,2-Trichloroethane	ND		0.00395	1	09/29/2020 01:25	WG1549420	
Trichloroethene	ND		0.00158	1	09/29/2020 01:25	WG1549420	
Trichlorofluoromethane	ND		0.00395	1	09/29/2020 01:25	WG1549420	
1,2,3-Trichloropropane	ND		0.0198	1	09/29/2020 01:25	WG1549420	
1,2,4-Trimethylbenzene	ND		0.00791	1	09/29/2020 01:25	WG1549420	
1,2,3-Trimethylbenzene	ND		0.00791	1	09/29/2020 01:25	WG1549420	
1,3,5-Trimethylbenzene	ND		0.00791	1	09/29/2020 01:25	WG1549420	
Vinyl chloride	ND		0.00395	1	09/29/2020 01:25	WG1549420	
Xylenes, Total	ND		0.0103	1	09/29/2020 01:25	WG1549420	
(S) Toluene-d8	109		75.0-131		09/29/2020 01:25	WG1549420	
(S) Toluene-d8	97.9		75.0-131		09/29/2020 13:39	WG1550931	
(S) 4-Bromofluorobenzene	102		67.0-138		09/29/2020 01:25	WG1549420	
(S) 4-Bromofluorobenzene	102		67.0-138		09/29/2020 13:39	WG1550931	
(S) 1,2-Dichloroethane-d4	87.1		70.0-130		09/29/2020 01:25	WG1549420	
(S) 1,2-Dichloroethane-d4	102		70.0-130		09/29/2020 13:39	WG1550931	

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
MRH (C9-C18)	ND		12.5	1	09/28/2020 02:10	WG1548722
HRH (C19-C35)	ND		12.5	1	09/28/2020 02:10	WG1548722
(S) 1-Chloro-octadecane	86.1		40.0-140		09/28/2020 02:10	WG1548722

PROJECT: C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24

SAMPLE RESULTS - 03

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Aldrin	ND		0.0251	1	09/28/2020 11:12	WG1548725	
Alpha BHC	ND		0.0251	1	09/28/2020 11:12	WG1548725	
Beta BHC	ND		0.0251	1	09/28/2020 11:12	WG1548725	
Delta BHC	ND		0.0251	1	09/28/2020 11:12	WG1548725	
Gamma BHC	ND		0.0251	1	09/28/2020 11:12	WG1548725	
Chlordane	ND		0.376	1	09/28/2020 11:12	WG1548725	
4,4-DDD	ND		0.0251	1	09/28/2020 11:12	WG1548725	
4,4-DDE	ND		0.0251	1	09/28/2020 11:12	WG1548725	
4,4-DDT	ND		0.0251	1	09/28/2020 11:12	WG1548725	
Dieldrin	ND		0.0251	1	09/28/2020 11:12	WG1548725	
Endosulfan I	ND		0.0251	1	09/28/2020 11:12	WG1548725	
Endosulfan II	ND		0.0251	1	09/28/2020 11:12	WG1548725	
Endosulfan sulfate	ND		0.0251	1	09/28/2020 11:12	WG1548725	
Endrin	ND		0.0251	1	09/28/2020 11:12	WG1548725	
Endrin aldehyde	ND		0.0251	1	09/28/2020 11:12	WG1548725	
Endrin ketone	ND		0.0251	1	09/28/2020 11:12	WG1548725	
Heptachlor	ND		0.0251	1	09/28/2020 11:12	WG1548725	
Heptachlor epoxide	ND		0.0251	1	09/28/2020 11:12	WG1548725	
Hexachlorobenzene	ND		0.0251	1	09/28/2020 11:12	WG1548725	
Methoxychlor	ND		0.0251	1	09/28/2020 11:12	WG1548725	
Toxaphene	ND		0.502	1	09/28/2020 11:12	WG1548725	
(S) Decachlorobiphenyl	85.5		10.0-135		09/28/2020 11:12	WG1548725	
(S) Tetrachloro-m-xylene	84.4		10.0-139		09/28/2020 11:12	WG1548725	

Polychlorinated Biphenyls (GC) by Method 8082

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
PCB 1016	ND		0.0427	1	09/28/2020 13:11	WG1548725
PCB 1221	ND		0.0427	1	09/28/2020 13:11	WG1548725
PCB 1232	ND		0.0427	1	09/28/2020 13:11	WG1548725
PCB 1242	ND		0.0427	1	09/28/2020 13:11	WG1548725
PCB 1248	ND		0.0213	1	09/28/2020 13:11	WG1548725
PCB 1254	ND		0.0213	1	09/28/2020 13:11	WG1548725
PCB 1260	ND		0.0213	1	09/28/2020 13:11	WG1548725
(S) Decachlorobiphenyl	92.5		10.0-135		09/28/2020 13:11	WG1548725
(S) Tetrachloro-m-xylene	101		10.0-139		09/28/2020 13:11	WG1548725

SDG: L1264151 DATE/TIME: 09/30/20 13:24

SAMPLE RESULTS - 04

Ss

Cn

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	82.8		1	09/27/2020 03:40	<u>WG1549365</u>	Tc

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	ND		0.0483	1	09/23/2020 12:55	WG1547742

Metals (ICP) by Method 6010D

· · · · · ·								
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	I	6
Analyte	mg/kg		mg/kg		date / time			ဳQc
Arsenic	ND		2.42	1	09/24/2020 13:02	WG1547617		
Barium	168		0.604	1	09/24/2020 13:02	WG1547617		⁷ Gl
Cadmium	ND		0.604	1	09/24/2020 13:02	WG1547617		0i
Chromium	20.2		1.21	1	09/24/2020 13:02	WG1547617	ſ	8
Lead	18.1		0.604	1	09/24/2020 13:02	WG1547617		A
Selenium	ND		2.42	1	09/24/2020 13:02	WG1547617		
Silver	ND		1.21	1	09/24/2020 13:02	WG1547617		°Sc

Volatile Petroleum Hydrocarbons by Method KS LRH

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
LRH (C5-C8)	ND		7.36	1	09/24/2020 13:46	WG1548508
(S) 2,5-Dibromotoluene(FID)	86.7		70.0-130		09/24/2020 13:46	WG1548508

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Acetone	ND	JO	0.0740	1	09/29/2020 01:44	WG1549420
Acrylonitrile	ND		0.0185	1	09/29/2020 01:44	WG1549420
Benzene	ND		0.00148	1	09/29/2020 01:44	WG1549420
Bromobenzene	ND		0.0185	1	09/29/2020 01:44	WG1549420
Bromodichloromethane	ND		0.00370	1	09/29/2020 01:44	WG1549420
Bromoform	ND		0.0370	1	09/29/2020 01:44	WG1549420
Bromomethane	ND		0.0185	1	09/29/2020 01:44	WG1549420
n-Butylbenzene	ND		0.0185	1	09/29/2020 01:44	WG1549420
sec-Butylbenzene	ND		0.0185	1	09/29/2020 01:44	WG1549420
tert-Butylbenzene	ND		0.00740	1	09/29/2020 01:44	WG1549420
Carbon tetrachloride	ND		0.00740	1	09/29/2020 01:44	WG1549420
Chlorobenzene	ND		0.00370	1	09/29/2020 01:44	WG1549420
Chlorodibromomethane	ND		0.00370	1	09/29/2020 01:44	WG1549420
Chloroethane	ND		0.00740	1	09/29/2020 01:44	WG1549420
Chloroform	ND		0.00370	1	09/29/2020 01:44	WG1549420
Chloromethane	ND		0.0185	1	09/29/2020 01:44	WG1549420
2-Chlorotoluene	ND		0.00370	1	09/29/2020 01:44	WG1549420
4-Chlorotoluene	ND		0.00740	1	09/29/2020 01:44	WG1549420
1,2-Dibromo-3-Chloropropane	ND		0.0370	1	09/29/2020 01:44	WG1549420
1,2-Dibromoethane	ND		0.00370	1	09/29/2020 01:44	WG1549420
Dibromomethane	ND		0.00740	1	09/29/2020 01:44	WG1549420
1,2-Dichlorobenzene	ND		0.00740	1	09/29/2020 01:44	WG1549420
1,3-Dichlorobenzene	ND		0.00740	1	09/29/2020 01:44	WG1549420
1,4-Dichlorobenzene	ND		0.00740	1	09/29/2020 01:44	WG1549420
Dichlorodifluoromethane	ND		0.00370	1	09/29/2020 01:44	WG1549420
1,1-Dichloroethane	ND		0.00370	1	09/29/2020 01:44	WG1549420
1,2-Dichloroethane	ND		0.00370	1	09/29/2020 01:44	<u>WG1549420</u>
	г.			хт.	SDG:	

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1264151 DATE/TIME: 09/30/20 13:24

PB-2 12-14' Collected date/time: 09/17/20 15:20

SAMPLE RESULTS - 04 L1264151

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	C
Analyte	mg/kg		mg/kg		date / time		
1,1-Dichloroethene	ND		0.00370	1	09/29/2020 01:44	WG1549420	² T
cis-1,2-Dichloroethene	ND		0.00370	1	09/29/2020 01:44	<u>WG1549420</u>	
trans-1,2-Dichloroethene	ND		0.00740	1	09/29/2020 01:44	<u>WG1549420</u>	³ S
1,2-Dichloropropane	ND		0.00740	1	09/29/2020 01:44	<u>WG1549420</u>	5
1,1-Dichloropropene	ND		0.00370	1	09/29/2020 01:44	<u>WG1549420</u>	
1,3-Dichloropropane	ND		0.00740	1	09/29/2020 01:44	<u>WG1549420</u>	⁴ C
cis-1,3-Dichloropropene	ND		0.00370	1	09/29/2020 01:44	<u>WG1549420</u>	
trans-1,3-Dichloropropene	ND		0.00740	1	09/29/2020 01:44	<u>WG1549420</u>	5
2,2-Dichloropropane	ND		0.00370	1	09/29/2020 01:44	<u>WG1549420</u>	°S
Di-isopropyl ether	ND		0.00148	1	09/29/2020 01:44	<u>WG1549420</u>	
Ethylbenzene	ND		0.00370	1	09/29/2020 01:44	<u>WG1549420</u>	ိုင
Hexachloro-1,3-butadiene	ND		0.0370	1	09/29/2020 01:44	WG1549420	
Isopropylbenzene	ND		0.00370	1	09/29/2020 01:44	WG1549420	7
p-Isopropyltoluene	ND		0.00740	1	09/29/2020 01:44	WG1549420	í G
2-Butanone (MEK)	ND		0.148	1	09/29/2020 13:58	<u>WG1550931</u>	
Methylene Chloride	ND		0.0370	1	09/29/2020 01:44	WG1549420	A ⁸
4-Methyl-2-pentanone (MIBK)	ND		0.0370	1	09/29/2020 01:44	<u>WG1549420</u>	
Methyl tert-butyl ether	ND		0.00148	1	09/29/2020 01:44	WG1549420	9
Naphthalene	ND		0.0185	1	09/29/2020 01:44	<u>WG1549420</u>	ľS
n-Propylbenzene	ND		0.00740	1	09/29/2020 01:44	WG1549420	
Styrene	ND		0.0185	1	09/29/2020 01:44	<u>WG1549420</u>	
1,1,1,2-Tetrachloroethane	ND		0.00370	1	09/29/2020 01:44	<u>WG1549420</u>	
1,1,2,2-Tetrachloroethane	ND		0.00370	1	09/29/2020 01:44	WG1549420	
1,1,2-Trichlorotrifluoroethane	ND		0.00370	1	09/29/2020 01:44	WG1549420	
Tetrachloroethene	ND		0.00370	1	09/29/2020 01:44	WG1549420	
Toluene	ND		0.00740	1	09/29/2020 01:44	WG1549420	
1,2,3-Trichlorobenzene	ND	JO	0.0185	1	09/29/2020 01:44	WG1549420	
1,2,4-Trichlorobenzene	ND	_	0.0185	1	09/29/2020 01:44	WG1549420	
1,1,1-Trichloroethane	ND		0.00370	1	09/29/2020 01:44	WG1549420	
1,1,2-Trichloroethane	ND		0.00370	1	09/29/2020 01:44	WG1549420	
Trichloroethene	ND		0.00148	1	09/29/2020 01:44	WG1549420	
Trichlorofluoromethane	ND		0.00370	1	09/29/2020 01:44	WG1549420	
1,2,3-Trichloropropane	ND		0.0185	1	09/29/2020 01:44	WG1549420	
1,2,4-Trimethylbenzene	ND		0.00740	1	09/29/2020 01:44	WG1549420	
1,2,3-Trimethylbenzene	ND		0.00740	1	09/29/2020 01:44	WG1549420	
1,3,5-Trimethylbenzene	ND		0.00740	1	09/29/2020 01:44	WG1549420	
Vinyl chloride	ND		0.00370	1	09/29/2020 01:44	WG1549420	
Xylenes, Total	ND		0.00962	1	09/29/2020 01:44	WG1549420	
(S) Toluene-d8	98.9		75.0-131		09/29/2020 01:44	WG1549420	
(S) Toluene-d8	99.1		75.0-131		09/29/2020 13:58	WG1550931	
(S) 4-Bromofluorobenzene	96.3		67.0-138		09/29/2020 01:44	WG1549420	
(S) 4-Bromofluorobenzene	107		67.0-138		09/29/2020 13:58	WG1550931	
(S) 1,2-Dichloroethane-d4	89.3		70.0-130		09/29/2020 01:44	WG1549420	
10/ 1,2 Dichlorocululic-u+	98.3		70.0-130		09/29/2020 13:58	WG1550931	

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
MRH (C9-C18)	ND		12.1	1	09/28/2020 01:25	WG1548722
HRH (C19-C35)	ND		12.1	1	09/28/2020 01:25	WG1548722
(S) 1-Chloro-octadecane	82.3		40.0-140		09/28/2020 01:25	WG1548722

PROJECT: C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24

PAGE: 18 of 98

SAMPLE RESULTS - 04

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Aldrin	ND		0.0242	1	09/24/2020 04:20	WG1547939	2
Alpha BHC	ND		0.0242	1	09/24/2020 04:20	<u>WG1547939</u>	
Beta BHC	ND		0.0242	1	09/24/2020 04:20	<u>WG1547939</u>	3
Delta BHC	ND		0.0242	1	09/24/2020 04:20	<u>WG1547939</u>	ິເ
Gamma BHC	ND		0.0242	1	09/24/2020 04:20	WG1547939	
Chlordane	ND		0.362	1	09/24/2020 04:20	<u>WG1547939</u>	4
4,4-DDD	ND		0.0242	1	09/24/2020 04:20	WG1547939	Ľ
4,4-DDE	ND		0.0242	1	09/24/2020 04:20	WG1547939	5
4,4-DDT	ND		0.0242	1	09/24/2020 04:20	WG1547939	5
Dieldrin	ND		0.0242	1	09/24/2020 04:20	WG1547939	
Endosulfan I	ND		0.0242	1	09/24/2020 04:20	WG1547939	6
Endosulfan II	ND		0.0242	1	09/24/2020 04:20	WG1547939	
Endosulfan sulfate	ND		0.0242	1	09/24/2020 04:20	WG1547939	7
Endrin	ND		0.0242	1	09/24/2020 04:20	WG1547939	Í (
Endrin aldehyde	ND		0.0242	1	09/24/2020 04:20	WG1547939	
Endrin ketone	ND		0.0242	1	09/24/2020 04:20	WG1547939	84
Hexachlorobenzene	ND		0.0242	1	09/24/2020 04:20	WG1547939	,
Heptachlor	ND		0.0242	1	09/24/2020 04:20	WG1547939	9
Heptachlor epoxide	ND		0.0242	1	09/24/2020 04:20	WG1547939	9 <
Methoxychlor	ND		0.0242	1	09/24/2020 04:20	WG1547939	
Toxaphene	ND		0.483	1	09/24/2020 04:20	WG1547939	
(S) Decachlorobiphenyl	56.9		10.0-135		09/24/2020 04:20	WG1547939	
(S) Tetrachloro-m-xylene	60.8		10.0-139		09/24/2020 04:20	WG1547939	

SDG: L1264151 DATE/TIME: 09/30/20 13:24

SAMPLE RESULTS - 05 L1264151

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	83.1		1	09/27/2020 03:40	WG1549365	Tc

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		4
Mercury	0.0513		0.0481	1	09/23/2020 12:57	WG1547742	Ľ

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	0.0513		0.0481	1	09/23/2020 12:57	WG1547742
Metals (ICP) by N	lethod 6010D Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	4.01		2.41	1	09/24/2020 13:05	WG1547617
Barium	232		0.602	1	09/24/2020 13:05	WG1547617
Cadmium	ND		0.602	1	09/24/2020 13:05	WG1547617
Chromium	18.9		1.20	1	09/24/2020 13:05	WG1547617
Lead	38.2		0.602	1	09/24/2020 13:05	WG1547617
			2.44	1	09/24/2020 13:05	WC1E 47617
Selenium	ND		2.41	I	09/24/2020 13:05	WG1547617

Volatile Petroleum Hydrocarbons by Method KS LRH

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
LRH (C5-C8)	ND		7.32	1	09/24/2020 14:18	WG1548508
(S) 2,5-Dibromotoluene(FID)	84.8		70.0-130		09/24/2020 14:18	WG1548508

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	ND	JO	0.0739	1	09/29/2020 02:03	WG1549420	
Acrylonitrile	ND		0.0185	1	09/29/2020 02:03	WG1549420	
Benzene	ND		0.00148	1	09/29/2020 02:03	WG1549420	
Bromobenzene	ND		0.0185	1	09/29/2020 02:03	WG1549420	
Bromodichloromethane	ND		0.00369	1	09/29/2020 02:03	WG1549420	
Bromoform	ND		0.0369	1	09/29/2020 02:03	WG1549420	
Bromomethane	ND		0.0185	1	09/29/2020 02:03	WG1549420	
n-Butylbenzene	ND		0.0185	1	09/29/2020 02:03	WG1549420	
sec-Butylbenzene	ND		0.0185	1	09/29/2020 02:03	WG1549420	
tert-Butylbenzene	ND		0.00739	1	09/29/2020 02:03	WG1549420	
Carbon tetrachloride	ND		0.00739	1	09/29/2020 02:03	WG1549420	
Chlorobenzene	ND		0.00369	1	09/29/2020 02:03	WG1549420	
Chlorodibromomethane	ND		0.00369	1	09/29/2020 02:03	WG1549420	
Chloroethane	ND		0.00739	1	09/29/2020 02:03	WG1549420	
Chloroform	ND		0.00369	1	09/29/2020 02:03	WG1549420	
Chloromethane	ND		0.0185	1	09/29/2020 02:03	WG1549420	
2-Chlorotoluene	ND		0.00369	1	09/29/2020 02:03	WG1549420	
4-Chlorotoluene	ND		0.00739	1	09/29/2020 02:03	WG1549420	
1,2-Dibromo-3-Chloropropane	ND		0.0369	1	09/29/2020 02:03	WG1549420	
1,2-Dibromoethane	ND		0.00369	1	09/29/2020 02:03	WG1549420	
Dibromomethane	ND		0.00739	1	09/29/2020 02:03	WG1549420	
1,2-Dichlorobenzene	ND		0.00739	1	09/29/2020 02:03	WG1549420	
1,3-Dichlorobenzene	ND		0.00739	1	09/29/2020 02:03	WG1549420	
1,4-Dichlorobenzene	ND		0.00739	1	09/29/2020 02:03	WG1549420	
Dichlorodifluoromethane	ND		0.00369	1	09/29/2020 02:03	WG1549420	
1,1-Dichloroethane	ND		0.00369	1	09/29/2020 02:03	WG1549420	
1,2-Dichloroethane	ND		0.00369	1	09/29/2020 02:03	WG1549420	
ACCOUN	T:		PROJEC	CT:	SDG:	DATE/TIME:	PA

SCS Engineers - KS

PROJECT: C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24

20 of 98

SAMPLE RESULTS - 05 L1264151

<u>پو</u>

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	C
Analyte	mg/kg		mg/kg		date / time		
1,1-Dichloroethene	ND		0.00369	1	09/29/2020 02:03	WG1549420	
cis-1,2-Dichloroethene	ND		0.00369	1	09/29/2020 02:03	WG1549420	
trans-1,2-Dichloroethene	ND		0.00739	1	09/29/2020 02:03	WG1549420	3
1,2-Dichloropropane	ND		0.00739	1	09/29/2020 02:03	WG1549420	ິSs
1,1-Dichloropropene	ND		0.00369	1	09/29/2020 02:03	WG1549420	
1,3-Dichloropropane	ND		0.00739	1	09/29/2020 02:03	WG1549420	
cis-1,3-Dichloropropene	ND		0.00369	1	09/29/2020 02:03	WG1549420	
trans-1,3-Dichloropropene	ND		0.00739	1	09/29/2020 02:03	WG1549420	5_
2,2-Dichloropropane	ND		0.00369	1	09/29/2020 02:03	WG1549420	ຶSr
Di-isopropyl ether	ND		0.00148	1	09/29/2020 02:03	WG1549420	
Ethylbenzene	ND		0.00369	1	09/29/2020 02:03	WG1549420	⁶ Q
Hexachloro-1,3-butadiene	ND		0.0369	1	09/29/2020 02:03	WG1549420	G
Isopropylbenzene	ND		0.00369	1	09/29/2020 02:03	WG1549420	7
p-lsopropyltoluene	ND		0.00739	1	09/29/2020 02:03	WG1549420	Í GI
2-Butanone (MEK)	ND		0.148	1	09/29/2020 14:36	WG1550931	
Methylene Chloride	ND		0.0369	1	09/29/2020 02:03	WG1549420	⁸ AI
4-Methyl-2-pentanone (MIBK)	ND		0.0369	1	09/29/2020 02:03	WG1549420	A
Methyl tert-butyl ether	ND		0.00148	1	09/29/2020 02:03	WG1549420	9
Naphthalene	ND		0.0185	1	09/29/2020 02:03	WG1549420	ຶິິ
n-Propylbenzene	ND		0.00739	1	09/29/2020 02:03	WG1549420	
Styrene	ND		0.0185	1	09/29/2020 02:03	WG1549420	
1,1,1,2-Tetrachloroethane	ND		0.00369	1	09/29/2020 02:03	WG1549420	
1,1,2,2-Tetrachloroethane	ND		0.00369	1	09/29/2020 02:03	WG1549420	
1,1,2-Trichlorotrifluoroethane	ND		0.00369	1	09/29/2020 02:03	WG1549420	
Tetrachloroethene	ND		0.00369	1	09/29/2020 02:03	WG1549420	
Toluene	ND		0.00739	1	09/29/2020 02:03	WG1549420	
1,2,3-Trichlorobenzene	ND	JO	0.0185	1	09/29/2020 02:03	WG1549420	
1,2,4-Trichlorobenzene	ND		0.0185	1	09/29/2020 02:03	WG1549420	
1,1,1-Trichloroethane	ND		0.00369	1	09/29/2020 02:03	WG1549420	
1,1,2-Trichloroethane	ND		0.00369	1	09/29/2020 02:03	WG1549420	
Trichloroethene	ND		0.00148	1	09/29/2020 02:03	WG1549420	
Trichlorofluoromethane	ND		0.00369	1	09/29/2020 02:03	WG1549420	
1,2,3-Trichloropropane	ND		0.0185	1	09/29/2020 02:03	WG1549420	
1,2,4-Trimethylbenzene	ND		0.00739	1	09/29/2020 02:03	WG1549420	
1,2,3-Trimethylbenzene	ND		0.00739	1	09/29/2020 02:03	WG1549420	
1,3,5-Trimethylbenzene	ND		0.00739	1	09/29/2020 02:03	WG1549420	
Vinyl chloride	ND		0.00369	1	09/29/2020 02:03	WG1549420	
Xylenes, Total	ND		0.00961	1	09/29/2020 02:03	WG1549420	
(S) Toluene-d8	108		75.0-131		09/29/2020 02:03	WG1549420	
(S) Toluene-d8	98.3		75.0-131		09/29/2020 02:03	WG1550931	
(S) 4-Bromofluorobenzene	102		67.0-138		09/29/2020 14:30	WG1549420	
(S) 4-Bromofluorobenzene	102		67.0-138		09/29/2020 02:03	WG1550931	
(S) 1,2-Dichloroethane-d4	94.3		70.0-130		09/29/2020 02:03	WG1549420	
(S) 1,2-Dichloroethane-d4	101		70.0-130		09/29/2020 14:36	<u>WG1550931</u>	

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
MRH (C9-C18)	ND		12.0	1	09/29/2020 10:44	WG1548722
HRH (C19-C35)	57.5		12.0	1	09/29/2020 10:44	WG1548722
(S) 1-Chloro-octadecane	93.9		40.0-140		09/29/2020 10:44	WG1548722

PROJECT: C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24

PAGE: 21 of 98

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Aldrin	ND		0.0241	1	09/28/2020 11:25	WG1548725	
Alpha BHC	ND		0.0241	1	09/28/2020 11:25	WG1548725	
Beta BHC	ND		0.0241	1	09/28/2020 11:25	WG1548725	
Delta BHC	ND		0.0241	1	09/28/2020 11:25	WG1548725	
Gamma BHC	ND		0.0241	1	09/28/2020 11:25	WG1548725	
Chlordane	ND		0.361	1	09/28/2020 11:25	WG1548725	
4,4-DDD	ND		0.0241	1	09/28/2020 11:25	WG1548725	
4,4-DDE	ND		0.0241	1	09/28/2020 11:25	WG1548725	
4,4-DDT	ND		0.0241	1	09/28/2020 11:25	WG1548725	
Dieldrin	ND		0.0241	1	09/28/2020 11:25	WG1548725	
Endosulfan I	ND		0.0241	1	09/28/2020 11:25	WG1548725	
Endosulfan II	ND		0.0241	1	09/28/2020 11:25	WG1548725	
Endosulfan sulfate	ND		0.0241	1	09/28/2020 11:25	WG1548725	
Endrin	ND		0.0241	1	09/28/2020 11:25	WG1548725	
Endrin aldehyde	ND		0.0241	1	09/28/2020 11:25	WG1548725	
Endrin ketone	ND		0.0241	1	09/28/2020 11:25	WG1548725	
Heptachlor	ND		0.0241	1	09/28/2020 11:25	WG1548725	
Heptachlor epoxide	ND		0.0241	1	09/28/2020 11:25	WG1548725	
Hexachlorobenzene	ND		0.0241	1	09/28/2020 11:25	WG1548725	
Methoxychlor	ND		0.0241	1	09/28/2020 11:25	WG1548725	
Toxaphene	ND		0.481	1	09/28/2020 11:25	WG1548725	
(S) Decachlorobiphenyl	75.9		10.0-135		09/28/2020 11:25	WG1548725	
(S) Tetrachloro-m-xylene	87.9		10.0-139		09/28/2020 11:25	WG1548725	

Polychlorinated Biphenyls (GC) by Method 8082

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
PCB 1016	ND		0.0409	1	09/28/2020 13:22	WG1548725
PCB 1221	ND		0.0409	1	09/28/2020 13:22	WG1548725
PCB 1232	ND		0.0409	1	09/28/2020 13:22	WG1548725
PCB 1242	ND		0.0409	1	09/28/2020 13:22	WG1548725
PCB 1248	ND		0.0205	1	09/28/2020 13:22	WG1548725
PCB 1254	ND		0.0205	1	09/28/2020 13:22	WG1548725
PCB 1260	ND		0.0205	1	09/28/2020 13:22	WG1548725
(S) Decachlorobiphenyl	79.6		10.0-135		09/28/2020 13:22	WG1548725
(S) Tetrachloro-m-xylene	93.4		10.0-139		09/28/2020 13:22	WG1548725

SDG: L1264151 DATE/TIME: 09/30/20 13:24

SAMPLE RESULTS - 06 L1264151

р

Ss

Cn

Sr

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		ſ	2
Total Solids	84.5		1	09/27/2020 04:11	WG1549366		Tc

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	0.112		0.0473	1	09/23/2020 13:00	WG1547742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	ND		2.37	1	09/24/2020 13:07	WG1547617
Barium	180		0.591	1	09/24/2020 13:07	WG1547617
Cadmium	ND		0.591	1	09/24/2020 13:07	WG1547617
Chromium	18.2		1.18	1	09/24/2020 13:07	WG1547617
Lead	33.3		0.591	1	09/24/2020 13:07	WG1547617
Selenium	ND		2.37	1	09/24/2020 13:07	WG1547617
Silver	ND		1.18	1	09/24/2020 13:07	WG1547617

Volatile Petroleum Hydrocarbons by Method KS LRH

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
LRH (C5-C8)	ND		7.05	1	09/24/2020 14:51	WG1548508
(S) 2,5-Dibromotoluene(FID)	82.7		70.0-130		09/24/2020 14:51	WG1548508

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	ND	JO	0.0719	1	09/29/2020 02:22	WG1549420	
Acrylonitrile	ND		0.0180	1	09/29/2020 02:22	WG1549420	
Benzene	ND		0.00144	1	09/29/2020 02:22	WG1549420	
Bromobenzene	ND		0.0180	1	09/29/2020 02:22	WG1549420	
Bromodichloromethane	ND		0.00360	1	09/29/2020 02:22	WG1549420	
Bromoform	ND		0.0360	1	09/29/2020 02:22	WG1549420	
Bromomethane	ND		0.0180	1	09/29/2020 02:22	WG1549420	
n-Butylbenzene	ND		0.0180	1	09/29/2020 02:22	WG1549420	
sec-Butylbenzene	ND		0.0180	1	09/29/2020 02:22	WG1549420	
tert-Butylbenzene	ND		0.00719	1	09/29/2020 02:22	WG1549420	
Carbon tetrachloride	ND		0.00719	1	09/29/2020 02:22	WG1549420	
Chlorobenzene	ND		0.00360	1	09/29/2020 02:22	WG1549420	
Chlorodibromomethane	ND		0.00360	1	09/29/2020 02:22	WG1549420	
Chloroethane	ND		0.00719	1	09/29/2020 02:22	WG1549420	
Chloroform	ND		0.00360	1	09/29/2020 02:22	WG1549420	
Chloromethane	ND		0.0180	1	09/29/2020 02:22	WG1549420	
2-Chlorotoluene	ND		0.00360	1	09/29/2020 02:22	WG1549420	
4-Chlorotoluene	ND		0.00719	1	09/29/2020 02:22	WG1549420	
1,2-Dibromo-3-Chloropropane	ND		0.0360	1	09/29/2020 02:22	WG1549420	
1,2-Dibromoethane	ND		0.00360	1	09/29/2020 02:22	WG1549420	
Dibromomethane	ND		0.00719	1	09/29/2020 02:22	WG1549420	
1,2-Dichlorobenzene	ND		0.00719	1	09/29/2020 02:22	WG1549420	
1,3-Dichlorobenzene	ND		0.00719	1	09/29/2020 02:22	WG1549420	
1,4-Dichlorobenzene	ND		0.00719	1	09/29/2020 02:22	WG1549420	
Dichlorodifluoromethane	ND		0.00360	1	09/29/2020 02:22	WG1549420	
1,1-Dichloroethane	ND		0.00360	1	09/29/2020 02:22	WG1549420	
1,2-Dichloroethane	ND		0.00360	1	09/29/2020 02:22	WG1549420	
ACCOUN	T:		PROJEC	T:	SDG:	DATE/TIME:	PAG

SCS Engineers - KS

PROJECT: C4-052-73682

SDG: L1264151

PB-9 9-11' Collected date/time: 09/17/20 13:32

SAMPLE RESULTS - 06 L1264151

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	Ср
Analyte	mg/kg		mg/kg		date / time		
1,1-Dichloroethene	ND		0.00360	1	09/29/2020 02:22	WG1549420	² Tc
cis-1,2-Dichloroethene	ND		0.00360	1	09/29/2020 02:22	WG1549420	1C
trans-1,2-Dichloroethene	ND		0.00719	1	09/29/2020 02:22	WG1549420	3
1,2-Dichloropropane	ND		0.00719	1	09/29/2020 02:22	WG1549420	°Ss
1,1-Dichloropropene	ND		0.00360	1	09/29/2020 02:22	WG1549420	
1,3-Dichloropropane	ND		0.00719	1	09/29/2020 02:22	<u>WG1549420</u>	⁴ Cn
cis-1,3-Dichloropropene	ND		0.00360	1	09/29/2020 02:22	<u>WG1549420</u>	CIT
trans-1,3-Dichloropropene	ND		0.00719	1	09/29/2020 02:22	WG1549420	5
2,2-Dichloropropane	ND		0.00360	1	09/29/2020 02:22	WG1549420	ຶSr
Di-isopropyl ether	ND		0.00144	1	09/29/2020 02:22	WG1549420	
Ethylbenzene	ND		0.00360	1	09/29/2020 02:22	<u>WG1549420</u>	⁶ Qc
Hexachloro-1,3-butadiene	ND		0.0360	1	09/29/2020 02:22	<u>WG1549420</u>	de
Isopropylbenzene	ND		0.00360	1	09/29/2020 02:22	WG1549420	7
p-Isopropyltoluene	ND		0.00719	1	09/29/2020 02:22	WG1549420	΄ GΙ
2-Butanone (MEK)	ND		0.144	1	09/29/2020 02:22	WG1549420	
Methylene Chloride	ND		0.0360	1	09/29/2020 02:22	WG1549420	⁸ Al
4-Methyl-2-pentanone (MIBK)	ND		0.0360	1	09/29/2020 02:22	WG1549420	
Methyl tert-butyl ether	ND		0.00144	1	09/29/2020 02:22	WG1549420	9
Naphthalene	ND		0.0180	1	09/29/2020 02:22	WG1549420	Sc
n-Propylbenzene	ND		0.00719	1	09/29/2020 02:22	WG1549420	
Styrene	ND		0.0180	1	09/29/2020 02:22	WG1549420	
1,1,1,2-Tetrachloroethane	ND		0.00360	1	09/29/2020 02:22	WG1549420	
1,1,2,2-Tetrachloroethane	ND		0.00360	1	09/29/2020 02:22	<u>WG1549420</u>	
1,1,2-Trichlorotrifluoroethane	ND		0.00360	1	09/29/2020 02:22	WG1549420	
Tetrachloroethene	ND		0.00360	1	09/29/2020 02:22	<u>WG1549420</u>	
Toluene	ND		0.00719	1	09/29/2020 02:22	WG1549420	
1,2,3-Trichlorobenzene	ND	JO	0.0180	1	09/29/2020 02:22	WG1549420	
1,2,4-Trichlorobenzene	ND		0.0180	1	09/29/2020 02:22	WG1549420	
1,1,1-Trichloroethane	ND		0.00360	1	09/29/2020 02:22	<u>WG1549420</u>	
1,1,2-Trichloroethane	ND		0.00360	1	09/29/2020 02:22	<u>WG1549420</u>	
Trichloroethene	ND		0.00144	1	09/29/2020 02:22	WG1549420	
Trichlorofluoromethane	ND		0.00360	1	09/29/2020 02:22	WG1549420	
1,2,3-Trichloropropane	ND		0.0180	1	09/29/2020 02:22	<u>WG1549420</u>	
1,2,4-Trimethylbenzene	ND		0.00719	1	09/29/2020 02:22	WG1549420	
1,2,3-Trimethylbenzene	ND		0.00719	1	09/29/2020 02:22	WG1549420	
1,3,5-Trimethylbenzene	ND		0.00719	1	09/29/2020 02:22	WG1549420	
Vinyl chloride	ND		0.00360	1	09/29/2020 02:22	WG1549420	
Xylenes, Total	ND		0.00935	1	09/29/2020 02:22	WG1549420	
(S) Toluene-d8	110		75.0-131		09/29/2020 02:22	WG1549420	
(b) rolactic do	110						
(S) 4-Bromofluorobenzene	104		67.0-138		09/29/2020 02:22	WG1549420	

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
MRH (C9-C18)	15.8	B	11.8	1	09/29/2020 11:06	WG1548722
HRH (C19-C35)	69.0		11.8	1	09/29/2020 11:06	WG1548722
(S) 1-Chloro-octadecane	101		40.0-140		09/29/2020 11:06	WG1548722

PROJECT: C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24

PAGE: 24 of 98

SAMPLE RESULTS - 06 L1264151

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	- i (
Analyte	mg/kg		mg/kg		date / time		
Aldrin	ND		0.0237	1	09/24/2020 04:33	WG1547939	2
Alpha BHC	ND		0.0237	1	09/24/2020 04:33	WG1547939	
Beta BHC	ND		0.0237	1	09/24/2020 04:33	WG1547939	3
Delta BHC	ND		0.0237	1	09/24/2020 04:33	WG1547939	
Gamma BHC	ND		0.0237	1	09/24/2020 04:33	WG1547939	
Chlordane	ND		0.355	1	09/24/2020 04:33	WG1547939	4
4,4-DDD	ND		0.0237	1	09/24/2020 04:33	WG1547939	
4,4-DDE	ND		0.0237	1	09/24/2020 04:33	WG1547939	5
4,4-DDT	ND		0.0237	1	09/24/2020 04:33	WG1547939	5
Dieldrin	ND		0.0237	1	09/24/2020 04:33	<u>WG1547939</u>	
Endosulfan I	ND		0.0237	1	09/24/2020 04:33	WG1547939	6
Endosulfan II	ND		0.0237	1	09/24/2020 04:33	<u>WG1547939</u>	
Endosulfan sulfate	ND		0.0237	1	09/24/2020 04:33	WG1547939	7
Endrin	ND		0.0237	1	09/24/2020 04:33	<u>WG1547939</u>	ĺ
Endrin aldehyde	ND		0.0237	1	09/24/2020 04:33	WG1547939	
Endrin ketone	ND		0.0237	1	09/24/2020 04:33	<u>WG1547939</u>	8
Hexachlorobenzene	ND		0.0237	1	09/24/2020 04:33	WG1547939	
Heptachlor	ND		0.0237	1	09/24/2020 04:33	WG1547939	9
Heptachlor epoxide	ND		0.0237	1	09/24/2020 04:33	WG1547939	
Methoxychlor	ND		0.0237	1	09/24/2020 04:33	WG1547939	
Toxaphene	ND		0.473	1	09/24/2020 04:33	WG1547939	
(S) Decachlorobiphenyl	53.4		10.0-135		09/24/2020 04:33	WG1547939	
(S) Tetrachloro-m-xylene	57.0		10.0-139		09/24/2020 04:33	WG1547939	

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result (dry) Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	mg/kg		date / time		
Acenaphthene	ND	0.0394	1	09/29/2020 15:51	<u>WG1550290</u>	
Acenaphthylene	ND	0.0394	1	09/29/2020 15:51	<u>WG1550290</u>	
Anthracene	0.0401	0.0394	1	09/29/2020 15:51	WG1550290	
Benzidine	ND	1.98	1	09/29/2020 15:51	<u>WG1550290</u>	
Benzo(a)anthracene	0.0895	0.0394	1	09/29/2020 15:51	WG1550290	
Benzo(b)fluoranthene	0.106	0.0394	1	09/29/2020 15:51	<u>WG1550290</u>	
Benzo(k)fluoranthene	ND	0.0394	1	09/29/2020 15:51	WG1550290	
Benzo(g,h,i)perylene	0.0512	0.0394	1	09/29/2020 15:51	<u>WG1550290</u>	
Benzo(a)pyrene	0.0822	0.0394	1	09/29/2020 15:51	WG1550290	
Bis(2-chlorethoxy)methane	ND	0.394	1	09/29/2020 15:51	WG1550290	
Bis(2-chloroethyl)ether	ND	0.394	1	09/29/2020 15:51	WG1550290	
2,2-Oxybis(1-Chloropropane)	ND	0.394	1	09/29/2020 15:51	WG1550290	
4-Bromophenyl-phenylether	ND	0.394	1	09/29/2020 15:51	WG1550290	
2-Chloronaphthalene	ND	0.0394	1	09/29/2020 15:51	WG1550290	
4-Chlorophenyl-phenylether	ND	0.394	1	09/29/2020 15:51	WG1550290	
Chrysene	0.0872	0.0394	1	09/29/2020 15:51	WG1550290	
Dibenz(a,h)anthracene	ND	0.0394	1	09/29/2020 15:51	WG1550290	
3,3-Dichlorobenzidine	ND	0.394	1	09/29/2020 15:51	WG1550290	
2,4-Dinitrotoluene	ND	0.394	1	09/29/2020 15:51	WG1550290	
2,6-Dinitrotoluene	ND	0.394	1	09/29/2020 15:51	WG1550290	
Fluoranthene	0.219	0.0394	1	09/29/2020 15:51	WG1550290	
Fluorene	ND	0.0394	1	09/29/2020 15:51	WG1550290	
Hexachlorobenzene	ND	0.394	1	09/29/2020 15:51	WG1550290	
Hexachloro-1,3-butadiene	ND	0.394	1	09/29/2020 15:51	WG1550290	
Hexachlorocyclopentadiene	ND	0.394	1	09/29/2020 15:51	WG1550290	
Hexachloroethane	ND	0.394	1	09/29/2020 15:51	WG1550290	
Indeno(1,2,3-cd)pyrene	0.0561	0.0394	1	09/29/2020 15:51	WG1550290	
Isophorone	ND	0.394	1	09/29/2020 15:51	WG1550290	
Naphthalene	0.0511	0.0394	1	09/29/2020 15:51	WG1550290	
NOCOA	NT:	PROJEC	T:	SDG:	DATE/TIME:	PAGE
SCS Enginee	ers - KS	C4-052-73	682	L1264151	09/30/20 13:24	25 of 9

SE: 25 of 98

PB-9 9-11' Collected date/time: 09/17/20 13:32

SAMPLE RESULTS - 06

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	Cp
Analyte	mg/kg		mg/kg		date / time		
Nitrobenzene	ND		0.394	1	09/29/2020 15:51	WG1550290	2 T
n-Nitrosodimethylamine	ND		0.394	1	09/29/2020 15:51	WG1550290	
n-Nitrosodiphenylamine	ND		0.394	1	09/29/2020 15:51	WG1550290	3
n-Nitrosodi-n-propylamine	ND		0.394	1	09/29/2020 15:51	WG1550290	[°] Ss
Phenanthrene	0.198		0.0394	1	09/29/2020 15:51	<u>WG1550290</u>	
Benzylbutyl phthalate	ND		0.394	1	09/29/2020 15:51	WG1550290	⁴ C
Bis(2-ethylhexyl)phthalate	ND		0.394	1	09/29/2020 15:51	WG1550290	
Di-n-butyl phthalate	ND		0.394	1	09/29/2020 15:51	<u>WG1550290</u>	5
Diethyl phthalate	ND		0.394	1	09/29/2020 15:51	<u>WG1550290</u>	ຶSr
Dimethyl phthalate	ND		0.394	1	09/29/2020 15:51	WG1550290	
Di-n-octyl phthalate	ND		0.394	1	09/29/2020 15:51	WG1550290	⁶ Q
Pyrene	0.187		0.0394	1	09/29/2020 15:51	WG1550290	
1,2,4-Trichlorobenzene	ND		0.394	1	09/29/2020 15:51	WG1550290	7
4-Chloro-3-methylphenol	ND		0.394	1	09/29/2020 15:51	WG1550290	Ĝ
2-Chlorophenol	ND		0.394	1	09/29/2020 15:51	WG1550290	
2,4-Dichlorophenol	ND		0.394	1	09/29/2020 15:51	WG1550290	⁸ A
2,4-Dimethylphenol	ND		0.394	1	09/29/2020 15:51	WG1550290	
4,6-Dinitro-2-methylphenol	ND		0.394	1	09/29/2020 15:51	WG1550290	9
2,4-Dinitrophenol	ND		0.394	1	09/29/2020 15:51	WG1550290	S
2-Nitrophenol	ND		0.394	1	09/29/2020 15:51	WG1550290	
4-Nitrophenol	ND		0.394	1	09/29/2020 15:51	WG1550290	
Pentachlorophenol	ND		0.394	1	09/29/2020 15:51	WG1550290	
Phenol	ND		0.394	1	09/29/2020 15:51	WG1550290	
2,4,6-Trichlorophenol	ND		0.394	1	09/29/2020 15:51	WG1550290	
(S) Nitrobenzene-d5	49.2		10.0-122		09/29/2020 15:51	WG1550290	
(S) 2-Fluorobiphenyl	60.1		15.0-120		09/29/2020 15:51	WG1550290	
(S) p-Terphenyl-d14	68.6		10.0-120		09/29/2020 15:51	WG1550290	
(S) Phenol-d5	55.6		10.0-120		09/29/2020 15:51	WG1550290	
(S) 2-Fluorophenol	63.9		12.0-120		09/29/2020 15:51	WG1550290	
(S) 2,4,6-Tribromophenol	71.8		10.0-127		09/29/2020 15:51	WG1550290	

SDG: L1264151 DATE/TIME: 09/30/20 13:24

*

Ss

Cn

Sr

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	89.1		1	09/27/2020 04:11	WG1549366	Tc

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	ND		0.0449	1	09/23/2020 13:07	WG1547742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	8.36		2.24	1	09/24/2020 13:16	WG1547617
Barium	48.4		0.561	1	09/24/2020 13:16	WG1547617
Cadmium	ND		0.561	1	09/24/2020 13:16	WG1547617
Chromium	17.4		1.12	1	09/24/2020 13:16	WG1547617
Lead	24.0		0.561	1	09/24/2020 13:16	WG1547617
Selenium	ND		2.24	1	09/24/2020 13:16	WG1547617
Silver	ND		1.12	1	09/24/2020 13:16	WG1547617

Volatile Petroleum Hydrocarbons by Method KS LRH

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
LRH (C5-C8)	ND		6.39	1	09/24/2020 15:24	WG1548508
(S) 2,5-Dibromotoluene(FID)	85.8		70.0-130		09/24/2020 15:24	WG1548508

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	ND	JO	0.0650	1	09/29/2020 02:41	WG1549420	
Acrylonitrile	ND		0.0162	1	09/29/2020 02:41	WG1549420	
Benzene	0.0199		0.00130	1	09/29/2020 02:41	WG1549420	
Bromobenzene	ND		0.0162	1	09/29/2020 02:41	WG1549420	
Bromodichloromethane	ND		0.00325	1	09/29/2020 02:41	WG1549420	
Bromoform	ND		0.0325	1	09/29/2020 02:41	WG1549420	
Bromomethane	ND		0.0162	1	09/29/2020 02:41	WG1549420	
n-Butylbenzene	ND		0.0162	1	09/29/2020 02:41	WG1549420	
sec-Butylbenzene	ND		0.0162	1	09/29/2020 02:41	WG1549420	
tert-Butylbenzene	ND		0.00650	1	09/29/2020 02:41	WG1549420	
Carbon tetrachloride	ND		0.00650	1	09/29/2020 02:41	WG1549420	
Chlorobenzene	0.00724		0.00325	1	09/29/2020 02:41	WG1549420	
Chlorodibromomethane	ND		0.00325	1	09/29/2020 02:41	WG1549420	
Chloroethane	ND		0.00650	1	09/29/2020 02:41	WG1549420	
Chloroform	ND		0.00325	1	09/29/2020 02:41	WG1549420	
Chloromethane	ND		0.0162	1	09/29/2020 02:41	WG1549420	
2-Chlorotoluene	ND		0.00325	1	09/29/2020 02:41	WG1549420	
4-Chlorotoluene	ND		0.00650	1	09/29/2020 02:41	WG1549420	
1,2-Dibromo-3-Chloropropane	ND		0.0325	1	09/29/2020 02:41	WG1549420	
1,2-Dibromoethane	ND		0.00325	1	09/29/2020 02:41	WG1549420	
Dibromomethane	ND		0.00650	1	09/29/2020 02:41	WG1549420	
1,2-Dichlorobenzene	ND		0.00650	1	09/29/2020 02:41	WG1549420	
1,3-Dichlorobenzene	ND		0.00650	1	09/29/2020 02:41	WG1549420	
1,4-Dichlorobenzene	ND		0.00650	1	09/29/2020 02:41	WG1549420	
Dichlorodifluoromethane	ND		0.00325	1	09/29/2020 02:41	WG1549420	
1,1-Dichloroethane	ND		0.00325	1	09/29/2020 02:41	WG1549420	
1,2-Dichloroethane	ND		0.00325	1	09/29/2020 02:41	WG1549420	
ACCOUN	т·		PROJEC	т·	SDG:	DATE/TIME:	PA

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1264151 DATE/TIME: 09/30/20 13:24

27 of 98

PB-3 1.5-3.5' Collected date/time: 09/18/20 09:39

SAMPLE RESULTS - 07 L1264151

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	Ср
Analyte	mg/kg		mg/kg		date / time		
1,1-Dichloroethene	ND		0.00325	1	09/29/2020 02:41	WG1549420	² Tc
cis-1,2-Dichloroethene	0.175		0.00325	1	09/29/2020 02:41	WG1549420	
trans-1,2-Dichloroethene	0.00823		0.00650	1	09/29/2020 02:41	WG1549420	3
1,2-Dichloropropane	ND		0.00650	1	09/29/2020 02:41	WG1549420	ໍSs
1,1-Dichloropropene	ND		0.00325	1	09/29/2020 02:41	WG1549420	
1,3-Dichloropropane	ND		0.00650	1	09/29/2020 02:41	WG1549420	⁴Cn
cis-1,3-Dichloropropene	ND		0.00325	1	09/29/2020 02:41	<u>WG1549420</u>	On
trans-1,3-Dichloropropene	ND		0.00650	1	09/29/2020 02:41	WG1549420	5
2,2-Dichloropropane	ND		0.00325	1	09/29/2020 02:41	WG1549420	ဳSr
Di-isopropyl ether	ND		0.00130	1	09/29/2020 02:41	WG1549420	
Ethylbenzene	ND		0.00325	1	09/29/2020 02:41	<u>WG1549420</u>	⁶ Qc
Hexachloro-1,3-butadiene	ND		0.0325	1	09/29/2020 02:41	WG1549420	ũũ
lsopropylbenzene	ND		0.00325	1	09/29/2020 02:41	<u>WG1549420</u>	7
p-lsopropyltoluene	ND		0.00650	1	09/29/2020 02:41	WG1549420	΄GΙ
2-Butanone (MEK)	ND		0.130	1	09/29/2020 02:41	WG1549420	
Methylene Chloride	ND		0.0325	1	09/29/2020 02:41	WG1549420	⁸ Al
4-Methyl-2-pentanone (MIBK)	ND		0.0325	1	09/29/2020 02:41	WG1549420	
Methyl tert-butyl ether	ND		0.00130	1	09/29/2020 02:41	WG1549420	9
Naphthalene	ND		0.0162	1	09/29/2020 02:41	WG1549420	Sc
n-Propylbenzene	ND		0.00650	1	09/29/2020 02:41	WG1549420	
Styrene	ND		0.0162	1	09/29/2020 02:41	WG1549420	
1,1,1,2-Tetrachloroethane	ND		0.00325	1	09/29/2020 02:41	WG1549420	
1,1,2,2-Tetrachloroethane	ND		0.00325	1	09/29/2020 02:41	WG1549420	
1,1,2-Trichlorotrifluoroethane	ND		0.00325	1	09/29/2020 02:41	WG1549420	
Tetrachloroethene	0.0788		0.00325	1	09/29/2020 02:41	WG1549420	
Toluene	ND		0.00650	1	09/29/2020 02:41	WG1549420	
1,2,3-Trichlorobenzene	ND	JO	0.0162	1	09/29/2020 02:41	WG1549420	
1,2,4-Trichlorobenzene	ND		0.0162	1	09/29/2020 02:41	WG1549420	
1,1,1-Trichloroethane	ND		0.00325	1	09/29/2020 02:41	<u>WG1549420</u>	
1,1,2-Trichloroethane	ND		0.00325	1	09/29/2020 02:41	WG1549420	
Trichloroethene	0.0572		0.00130	1	09/29/2020 02:41	<u>WG1549420</u>	
Trichlorofluoromethane	ND		0.00325	1	09/29/2020 02:41	WG1549420	
1,2,3-Trichloropropane	ND		0.0162	1	09/29/2020 02:41	<u>WG1549420</u>	
1,2,4-Trimethylbenzene	0.00866		0.00650	1	09/29/2020 02:41	WG1549420	
1,2,3-Trimethylbenzene	0.00789		0.00650	1	09/29/2020 02:41	<u>WG1549420</u>	
1,3,5-Trimethylbenzene	ND		0.00650	1	09/29/2020 02:41	WG1549420	
Vinyl chloride	ND		0.00325	1	09/29/2020 02:41	WG1549420	
Xylenes, Total	0.0128		0.00845	1	09/29/2020 02:41	WG1549420	
(S) Toluene-d8	103		75.0-131		09/29/2020 02:41	WG1549420	
(S) 4-Bromofluorobenzene	103		67.0-138		09/29/2020 02:41	WG1549420	
(S) 1,2-Dichloroethane-d4	94.9		70.0-130		09/29/2020 02:41	WG1549420	

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
MRH (C9-C18)	321		22.4	2	09/29/2020 14:32	WG1548722
HRH (C19-C35)	209		11.2	1	09/29/2020 13:23	<u>WG1548722</u>
(S) 1-Chloro-octadecane	104		40.0-140		09/29/2020 13:23	WG1548722
(S) 1-Chloro-octadecane	111		40.0-140		09/29/2020 14:32	WG1548722

PROJECT: C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24

PB-3 1.5-3.5' collected date/time: 09/18/20 09:39 Pesticides (GC) by Method 8081

SAMPLE RESULTS - 07

ND 0.0224 1 09/28/2020 11:37 WGI548725 Alpha BHC ND 0.0224 1 09/28/2020 11:37 WGI548725 Beta BHC ND 0.0224 1 09/28/2020 11:37 WGI548725 Delta BHC ND 0.0224 1 09/28/2020 11:37 WGI548725 Garma BHC ND 0.0224 1 09/28/2020 11:37 WGI548725 Chlordane ND 0.0224 1 09/28/2020 11:37 WGI548725 Chlordane ND 0.0224 1 09/28/2020 11:37 WGI548725 4.4-DDE ND 0.0224 1 09/28/2020 11:37 WGI548725 4.4-DDE ND 0.0224 1 09/28/2020 11:37 WGI548725 Dieldrin ND 0.0224 1 09/28/2020 11:37 WGI548725 Endosulfan II ND 0.0224 1 09/28/2020 11:37 WGI548725 Endosulfan sulfate ND 0.0224 1 09/28/2020 11:37 WGI548725 End		Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Alpha BHC ND 0.0224 1 09/28/2020 11:37 WG1548725 Beta BHC ND 0.0224 1 09/28/2020 11:37 WG1548725 Delta BHC ND 0.0224 1 09/28/2020 11:37 WG1548725 Gamma BHC ND 0.0224 1 09/28/2020 11:37 WG1548725 Chlordane ND 0.337 1 09/28/2020 11:37 WG1548725 4.4-DDD ND 0.0224 1 09/28/2020 11:37 WG1548725 4.4-DDT ND 0.0224 1 09/28/2020 11:37 WG1548725 Dieldrin ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan I ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan sulfate ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan sulfate ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin iadehyde ND 0.0224 1 09/28/2020 11:37 WG1548725	Analyte	mg/kg		mg/kg		date / time		
Beta BHC ND 0.0224 1 09/28/2020 11:37 V/C1548725 Delta BHC ND 0.0224 1 09/28/2020 11:37 WG1548725 Gamma BHC ND 0.337 1 09/28/2020 11:37 WG1548725 Chlordane ND 0.337 1 09/28/2020 11:37 WG1548725 A4-DDD ND 0.0224 1 09/28/2020 11:37 WG1548725 A4-DDE ND 0.0224 1 09/28/2020 11:37 WG1548725 Deledrin ND 0.0224 1 09/28/2020 11:37 WG1548725 Deledrin ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan I ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan sulfate ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin aldehyde ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin aldehyde ND 0.0224 1 09/28/2020 11:37 WG1548725	Aldrin	ND		0.0224	1	09/28/2020 11:37	WG1548725	2
Delta BHC ND 0.0224 1 09/28/2020 11:37 WG1548725 Gamma BHC ND 0.0224 1 09/28/2020 11:37 WG1548725 Chlordane ND 0.337 1 09/28/2020 11:37 WG1548725 4.4-DDD ND 0.0224 1 09/28/2020 11:37 WG1548725 4.4-DDF ND 0.0224 1 09/28/2020 11:37 WG1548725 Dieldrin ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan I ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan II ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan sulfate ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan II ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin ladehyde ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin ladehyde ND 0.0224 1 09/28/2020 11:37 WG1	Alpha BHC	ND		0.0224	1	09/28/2020 11:37	WG1548725	
Gamma BHC ND 0.0224 1 09/28/2020 11:37 WG1548725 Chlordane ND 0.337 1 09/28/2020 11:37 WG1548725 4,4-DDD ND 0.0224 1 09/28/2020 11:37 WG1548725 4,4-DDE ND 0.0224 1 09/28/2020 11:37 WG1548725 Dieldrin ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan I ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan II ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin aldehyde ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin ketone ND 0.0224 1 09/28/2020 11:37 WG1548	Beta BHC	ND		0.0224	1	09/28/2020 11:37	WG1548725	3
Chlordane ND 0.337 1 09/28/2020 11:37 WG1548725 4.4-DDD ND 0.0224 1 09/28/2020 11:37 WG1548725 4.4-DDT ND 0.0224 1 09/28/2020 11:37 WG1548725 Dieldrin ND 0.0224 1 09/28/2020 11:37 WG1548725 Dieldrin ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan I ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan II ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan II ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin aldehyde ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin aldehyde ND 0.0224 1 09/28/2020 11:37 WG1548725 Hedrachlor epoxide ND 0.0224 1 09/28/2020 11:37 WG1548725 Hedrachlor opoxide ND 0.0224 1 09/28/2020 11:37	Delta BHC	ND		0.0224	1	09/28/2020 11:37	WG1548725	
4.4-DDD ND 0.0224 1 09/28/2020 11:37 WG1548725 4.4-DDE ND 0.0224 1 09/28/2020 11:37 WG1548725 4.4-DDT ND 0.0224 1 09/28/2020 11:37 WG1548725 Dieldrin ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan I ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan WD 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan II ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin aldehyde ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin aldehyde ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin ketone ND 0.0224 1 09/28/2020 11:37 WG1548725 Heptachlor epoxide ND 0.0224 1 09/28/2020 11:37 WG1548725 Heptachlor epoxide ND 0.0224 1 09/28/2020 11:37 WG1548725 Heptachlor epoxide ND 0.0224 1 09/28/20	Gamma BHC	ND		0.0224	1	09/28/2020 11:37	WG1548725	L
A4-DDE ND 0.0224 1 09/28/2020 11:37 WG1548725 A4-DDT ND 0.0224 1 09/28/2020 11:37 WG1548725 Dieldrin ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan I ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan II ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan sulfate ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin aldehyde ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin aldehyde ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin ketone ND 0.0224 1 09/28/2020 11:37 WG1548725 Heptachlor epoxide ND 0.0224 1 09/28/2020 11:37 WG1548725 Heptachlor poxide ND 0.0224 1 09/28/2020 11:37 WG1548725 Hexachlorobenzene ND 0.0224 1 09/28/2020 11:37 WG1548725 Methoxychlor ND 0.0224 1	Chlordane	ND		0.337	1	09/28/2020 11:37	WG1548725	2
A.4-DDT ND 0.0224 1 09/28/2020 11:37 WG1548725 Dieldrin ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan I ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan II ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan sulfate ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan il ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan il dehyde ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin aldehyde ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin ketone ND 0.0224 1 09/28/2020 11:37 WG1548725 Heptachlor epoxide ND 0.0224 1 09/28/2020 11:37 WG1548725 Heptachlor epoxide ND 0.0224 1 09/28/2020 11:37 WG1548725 Heptachlor epoxide ND 0.0224 1 09/28/2020 11:37 WG1548725 Methoxychlor ND 0.0224 </td <td>4,4-DDD</td> <td>ND</td> <td></td> <td>0.0224</td> <td>1</td> <td>09/28/2020 11:37</td> <td>WG1548725</td> <td></td>	4,4-DDD	ND		0.0224	1	09/28/2020 11:37	WG1548725	
Dieldrin ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan I ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan sulfate ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan sulfate ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin aldehyde ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin ketone ND 0.0224 1 09/28/2020 11:37 WG1548725 Heptachlor epoxide ND 0.0224 1 09/28/2020 11:37 WG1548725 Heptachlor epoxide ND 0.0224 1 09/28/2020 11:37 WG1548725 Heptachlor epoxide ND 0.0224 1 09/28/2020 11:37 WG1548725 Hexachlorobenzene ND 0.0224 1 09/28/2020 11:37 WG1548725 Toxaphene ND 0.0224 1 0	4,4-DDE	ND		0.0224	1	09/28/2020 11:37	WG1548725	
Endosulfan I ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan II ND 0.0224 1 09/28/2020 11:37 WG1548725 Endosulfan sulfate ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin aldehyde ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin aldehyde ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin ketone ND 0.0224 1 09/28/2020 11:37 WG1548725 Heptachlor epoxide ND 0.0224 1 09/28/2020 11:37 WG1548725 Hexachlorobenzene ND 0.0224 1 09/28/2020 11:37 WG1548725 Methoxychlor ND 0.0224 1 09/28/2020 11:37 WG1548725 Toxaphene ND 0.0224 1 09/28/2020 11:37 WG1548725 (S) Decachlorobiphenyl 86.1 0.0224 1 <td< td=""><td>4,4-DDT</td><td>ND</td><td></td><td>0.0224</td><td>1</td><td>09/28/2020 11:37</td><td>WG1548725</td><td></td></td<>	4,4-DDT	ND		0.0224	1	09/28/2020 11:37	WG1548725	
Endosultant ND 0.0224 1 09/28/2020 f1.37 WG1548725 Endosulfan II ND 0.0224 1 09/28/2020 f1.37 WG1548725 Endosulfan sulfate ND 0.0224 1 09/28/2020 f1.37 WG1548725 Endrin ND 0.0224 1 09/28/2020 f1.37 WG1548725 Endrin aldehyde ND 0.0224 1 09/28/2020 f1.37 WG1548725 Endrin ketone ND 0.0224 1 09/28/2020 f1.37 WG1548725 Heptachlor ND 0.0224 1 09/28/2020 f1.37 WG1548725 Heptachlor epoxide ND 0.0224 1 09/28/2020 f1.37 WG1548725 Hexachlorobenzene ND 0.0224 1 09/28/2020 f1.37 WG1548725 Methoxychlor ND 0.0224 1 09/28/2020 f1.37 WG1548725 Toxaphene ND 0.0224 1 09/28/2020 f1.37 WG1548725 (S) Decachlorobiphenyl 86.1 0.0224 1 09/28	Dieldrin	ND		0.0224	1	09/28/2020 11:37	WG1548725	
Endosulfan sulfate ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin aldehyde ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin aldehyde ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin ketone ND 0.0224 1 09/28/2020 11:37 WG1548725 Heptachlor ND 0.0224 1 09/28/2020 11:37 WG1548725 Heptachlor epoxide ND 0.0224 1 09/28/2020 11:37 WG1548725 Hexachlorobenzene ND 0.0224 1 09/28/2020 11:37 WG1548725 Methoxychlor ND 0.0224 1 09/28/2020 11:37 WG1548725 Toxaphene ND 0.0224 1 09/28/2020 11:37 WG1548725 (S) Decachlorobiphenyl 86.1 10.0-135 09/28/2020 11:37 WG1548725	Endosulfan I	ND		0.0224	1	09/28/2020 11:37	WG1548725	6
Endrin ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin aldehyde ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin ketone ND 0.0224 1 09/28/2020 11:37 WG1548725 Heptachlor ND 0.0224 1 09/28/2020 11:37 WG1548725 Heptachlor epoxide ND 0.0224 1 09/28/2020 11:37 WG1548725 Hexachlorobenzene ND 0.0224 1 09/28/2020 11:37 WG1548725 Methoxychlor ND 0.0224 1 09/28/2020 11:37 WG1548725 Toxaphene ND 0.0224 1 09/28/2020 11:37 WG1548725 (S) Decachlorobiphenyl 86.1 10.0-135 09/28/2020 11:37 WG1548725	Endosulfan II	ND		0.0224	1	09/28/2020 11:37	WG1548725	
Endrin aldehyde ND 0.0224 1 09/28/2020 11:37 WG1548725 Endrin ketone ND 0.0224 1 09/28/2020 11:37 WG1548725 Heptachlor ND 0.0224 1 09/28/2020 11:37 WG1548725 Heptachlor epoxide ND 0.0224 1 09/28/2020 11:37 WG1548725 Heptachlorobenzene ND 0.0224 1 09/28/2020 11:37 WG1548725 Methoxychlor ND 0.0224 1 09/28/2020 11:37 WG1548725 Toxaphene ND 0.0224 1 09/28/2020 11:37 WG1548725 (S) Decachlorobiphenyl 86.1 10.0-135 09/28/2020 11:37 WG1548725	Endosulfan sulfate	ND		0.0224	1	09/28/2020 11:37	WG1548725	Ε
Endrin ketone ND 0.0224 1 09/28/2020 11:37 WG1548725 Heptachlor ND 0.0224 1 09/28/2020 11:37 WG1548725 Heptachlor epoxide ND 0.0224 1 09/28/2020 11:37 WG1548725 Hexachlorobenzene ND 0.0224 1 09/28/2020 11:37 WG1548725 Methoxychlor ND 0.0224 1 09/28/2020 11:37 WG1548725 Toxaphene ND 0.0224 1 09/28/2020 11:37 WG1548725 (S) Decachlorobiphenyl 86.1 10.0-135 09/28/2020 11:37 WG1548725	Endrin	ND		0.0224	1	09/28/2020 11:37	WG1548725	
Heptachlor ND 0.0224 1 09/28/2020 11:37 WG1548725 Heptachlor epoxide ND 0.0224 1 09/28/2020 11:37 WG1548725 Hexachlorobenzene ND 0.0224 1 09/28/2020 11:37 WG1548725 Methoxychlor ND 0.0224 1 09/28/2020 11:37 WG1548725 Toxaphene ND 0.0224 1 09/28/2020 11:37 WG1548725 (S) Decachlorobiphenyl 86.1 10.0-135 09/28/2020 11:37 WG1548725	Endrin aldehyde	ND		0.0224	1	09/28/2020 11:37	WG1548725	L
Heptachlor epoxide ND 0.0224 1 09/28/2020 11:37 WG1548725 Hexachlorobenzene ND 0.0224 1 09/28/2020 11:37 WG1548725 Methoxychlor ND 0.0224 1 09/28/2020 11:37 WG1548725 Toxaphene ND 0.449 1 09/28/2020 11:37 WG1548725 (S) Decachlorobiphenyl 86.1 10.0-135 09/28/2020 11:37 WG1548725	Endrin ketone	ND		0.0224	1	09/28/2020 11:37	WG1548725	8
Hexachlorobenzene ND 0.0224 1 09/28/2020 11:37 WG1548725 Methoxychlor ND 0.0224 1 09/28/2020 11:37 WG1548725 Toxaphene ND 0.449 1 09/28/2020 11:37 WG1548725 (S) Decachlorobiphenyl 86.1 10.0-135 09/28/2020 11:37 WG1548725	Heptachlor	ND		0.0224	1	09/28/2020 11:37	WG1548725	L
Methoxychlor ND 0.0224 1 09/28/2020 11:37 WG1548725 Toxaphene ND 0.449 1 09/28/2020 11:37 WG1548725 (S) Decachlorobiphenyl 86.1 10.0-135 09/28/2020 11:37 WG1548725	Heptachlor epoxide	ND		0.0224	1	09/28/2020 11:37	WG1548725	ç
Toxaphene ND 0.449 1 09/28/2020 11:37 WG1548725 (S) Decachlorobiphenyl 86.1 10.0-135 09/28/2020 11:37 WG1548725	Hexachlorobenzene	ND		0.0224	1	09/28/2020 11:37	WG1548725	
(S) Decachlorobiphenyl 86.1 10.0-135 09/28/2020 11:37 WG1548725	Methoxychlor	ND		0.0224	1	09/28/2020 11:37	WG1548725	- L
	Toxaphene	ND		0.449	1	09/28/2020 11:37	WG1548725	
(S) Tetrachloro-m-xylene 86.6 10.0-139 09/28/2020 11:37 WG1548725	(S) Decachlorobiphenyl	86.1		10.0-135		09/28/2020 11:37	WG1548725	
	(S) Tetrachloro-m-xylene	86.6		10.0-139		09/28/2020 11:37	WG1548725	

Polychlorinated Biphenyls (GC) by Method 8082

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
PCB 1016	ND		0.0381	1	09/28/2020 13:32	WG1548725
PCB 1221	ND		0.0381	1	09/28/2020 13:32	WG1548725
PCB 1232	ND		0.0381	1	09/28/2020 13:32	WG1548725
PCB 1242	ND		0.0381	1	09/28/2020 13:32	WG1548725
PCB 1248	ND		0.0191	1	09/28/2020 13:32	WG1548725
PCB 1254	ND		0.0191	1	09/28/2020 13:32	WG1548725
PCB 1260	ND		0.0191	1	09/28/2020 13:32	WG1548725
(S) Decachlorobiphenyl	88.7		10.0-135		09/28/2020 13:32	WG1548725
(S) Tetrachloro-m-xylene	94.7		10.0-139		09/28/2020 13:32	WG1548725

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Acenaphthene	ND		0.0747	2	09/29/2020 17:36	WG1550290
Acenaphthylene	ND		0.0747	2	09/29/2020 17:36	WG1550290
Anthracene	ND		0.0747	2	09/29/2020 17:36	WG1550290
Benzidine	ND		3.75	2	09/29/2020 17:36	WG1550290
Benzo(a)anthracene	ND		0.0747	2	09/29/2020 17:36	WG1550290
Benzo(b)fluoranthene	ND		0.0747	2	09/29/2020 17:36	<u>WG1550290</u>
Benzo(k)fluoranthene	ND		0.0747	2	09/29/2020 17:36	WG1550290
Benzo(g,h,i)perylene	ND		0.0747	2	09/29/2020 17:36	<u>WG1550290</u>
Benzo(a)pyrene	ND		0.0747	2	09/29/2020 17:36	WG1550290
Bis(2-chlorethoxy)methane	ND		0.747	2	09/29/2020 17:36	WG1550290
Bis(2-chloroethyl)ether	ND		0.747	2	09/29/2020 17:36	<u>WG1550290</u>
2,2-Oxybis(1-Chloropropane)	ND		0.747	2	09/29/2020 17:36	<u>WG1550290</u>
4-Bromophenyl-phenylether	ND		0.747	2	09/29/2020 17:36	<u>WG1550290</u>
2-Chloronaphthalene	ND		0.0747	2	09/29/2020 17:36	<u>WG1550290</u>
4-Chlorophenyl-phenylether	ND		0.747	2	09/29/2020 17:36	WG1550290

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1264151 DATE/TIME: 09/30/20 13:24

PAGE: 29 of 98

PB-3 1.5-3.5' Collected date/time: 09/18/20 09:39

SAMPLE RESULTS - 07 L1264151

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Chrysene	ND		0.0747	2	09/29/2020 17:36	WG1550290	
Dibenz(a,h)anthracene	ND		0.0747	2	09/29/2020 17:36	WG1550290	
3,3-Dichlorobenzidine	ND		0.747	2	09/29/2020 17:36	<u>WG1550290</u>	
2,4-Dinitrotoluene	ND		0.747	2	09/29/2020 17:36	WG1550290	
2,6-Dinitrotoluene	ND		0.747	2	09/29/2020 17:36	WG1550290	
Fluoranthene	ND		0.0747	2	09/29/2020 17:36	<u>WG1550290</u>	
luorene	ND		0.0747	2	09/29/2020 17:36	WG1550290	
Hexachlorobenzene	ND		0.747	2	09/29/2020 17:36	WG1550290	I
Hexachloro-1,3-butadiene	ND		0.747	2	09/29/2020 17:36	WG1550290	
Hexachlorocyclopentadiene	ND		0.747	2	09/29/2020 17:36	WG1550290	
Hexachloroethane	ND		0.747	2	09/29/2020 17:36	WG1550290	
ndeno(1,2,3-cd)pyrene	ND		0.0747	2	09/29/2020 17:36	WG1550290	
sophorone	ND		0.747	2	09/29/2020 17:36	<u>WG1550290</u>	[
Naphthalene	0.0876		0.0747	2	09/29/2020 17:36	WG1550290	
litrobenzene	ND		0.747	2	09/29/2020 17:36	WG1550290	l
n-Nitrosodimethylamine	ND		0.747	2	09/29/2020 17:36	WG1550290	
n-Nitrosodiphenylamine	ND		0.747	2	09/29/2020 17:36	WG1550290	
n-Nitrosodi-n-propylamine	ND		0.747	2	09/29/2020 17:36	WG1550290	[
Phenanthrene	0.137		0.0747	2	09/29/2020 17:36	WG1550290	
Benzylbutyl phthalate	ND		0.747	2	09/29/2020 17:36	WG1550290	
Bis(2-ethylhexyl)phthalate	ND		0.747	2	09/29/2020 17:36	WG1550290	
Di-n-butyl phthalate	ND		0.747	2	09/29/2020 17:36	WG1550290	
Diethyl phthalate	ND		0.747	2	09/29/2020 17:36	WG1550290	
Dimethyl phthalate	ND		0.747	2	09/29/2020 17:36	WG1550290	
Di-n-octyl phthalate	ND		0.747	2	09/29/2020 17:36	WG1550290	
Pyrene	0.0802		0.0747	2	09/29/2020 17:36	WG1550290	
I,2,4-Trichlorobenzene	ND		0.747	2	09/29/2020 17:36	WG1550290	
1-Chloro-3-methylphenol	ND		0.747	2	09/29/2020 17:36	WG1550290	
2-Chlorophenol	ND		0.747	2	09/29/2020 17:36	WG1550290	
2,4-Dichlorophenol	ND		0.747	2	09/29/2020 17:36	WG1550290	
2,4-Dimethylphenol	ND		0.747	2	09/29/2020 17:36	WG1550290	
1,6-Dinitro-2-methylphenol	ND		0.747	2	09/29/2020 17:36	WG1550290	
2,4-Dinitrophenol	ND		0.747	2	09/29/2020 17:36	WG1550290	
2-Nitrophenol	ND		0.747	2	09/29/2020 17:36	WG1550290	
1-Nitrophenol	ND		0.747	2	09/29/2020 17:36	WG1550290	
Pentachlorophenol	ND		0.747	2	09/29/2020 17:36	WG1550290	
Phenol	ND		0.747	2	09/29/2020 17:36	WG1550290	
2,4,6-Trichlorophenol	ND		0.747	2	09/29/2020 17:36	WG1550290	
(S) Nitrobenzene-d5	67.4		10.0-122		09/29/2020 17:36	WG1550290	
(S) 2-Fluorobiphenyl	70.7		15.0-120		09/29/2020 17:36	WG1550290	
(S) p-Terphenyl-d14	68.9		10.0-120		09/29/2020 17:36	WG1550290	
(S) Phenol-d5	58.5		10.0-120		09/29/2020 17:36	WG1550290	
(S) 2-Fluorophenol	66.7		12.0-120		09/29/2020 17:36	WG1550290	
(S) 2,4,6-Tribromophenol	83.2		10.0-127		09/29/2020 17:36	WG1550290	

Sample Narrative:

L1264151-07 WG1550290: Dilution due to matrix impact during extract concentration procedure

PROJECT: C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24

PAGE: 30 of 98

SAMPLE RESULTS - 08 L1264151

р

Ss

Cn

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	82.1		1	09/27/2020 04:11	WG1549366	Tc

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	0.0544		0.0487	1	09/23/2020 13:10	WG1547742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	5.04		2.44	1	09/24/2020 13:18	WG1547617
Barium	152		0.609	1	09/24/2020 13:18	WG1547617
Cadmium	0.764		0.609	1	09/24/2020 13:18	WG1547617
Chromium	21.0		1.22	1	09/24/2020 13:18	WG1547617
Lead	4770		0.609	1	09/24/2020 13:18	WG1547617
Selenium	ND		2.44	1	09/24/2020 13:18	WG1547617
Silver	ND		1.22	1	09/24/2020 13:18	WG1547617

Volatile Petroleum Hydrocarbons by Method KS LRH

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
LRH (C5-C8)	ND		7.50	1	09/24/2020 15:57	WG1548508
(S) 2,5-Dibromotoluene(FID)	83.8		70.0-130		09/24/2020 15:57	WG1548508

Volatile Organic Compounds (GC/MS) by Method 8260D

ng/kg ID ID ID ID ID ID ID ID ID ID ID ID ID	<u>10</u>	mg/kg 0.0754 0.0189 0.00151 0.0189 0.00377 0.0377 0.0189 0.0189 0.0189 0.00754 0.00754 0.00377 0.00377	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	date / time 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00	WG1549420	
ID .0297 ID ID ID ID ID ID ID ID ID ID ID ID ID	<u>0</u>	0.0189 0.00151 0.0189 0.00377 0.0377 0.0189 0.0189 0.0189 0.00754 0.00754 0.00377	1 1 1 1 1 1 1 1 1 1 1 1 1 1	09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00	WG1549420	
ID .0297 ID ID ID ID ID ID ID ID ID ID ID ID ID		0.00151 0.0189 0.00377 0.0377 0.0189 0.0189 0.0189 0.00754 0.00754 0.00377	1 1 1 1 1 1 1 1 1 1 1 1	09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00	WG1549420	
ID ID ID ID ID ID ID ID ID ID ID ID ID I		0.0189 0.00377 0.0377 0.0189 0.0189 0.0189 0.00754 0.00754 0.00377	1 1 1 1 1 1 1 1 1 1 1	09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00	WG1549420	
ID ID ID ID ID ID ID ID ID ID ID ID ID		0.00377 0.0377 0.0189 0.0189 0.0189 0.00754 0.00754 0.00377	1 1 1 1 1 1 1 1 1	09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00	WG1549420	
ID ID ID ID ID ID .181 ID		0.0377 0.0189 0.0189 0.0189 0.00754 0.00754 0.00377	1 1 1 1 1 1 1 1	09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00	WG1549420 WG1549420 WG1549420 WG1549420 WG1549420 WG1549420	
ID ID ID ID ID IN 181 ID		0.0189 0.0189 0.0189 0.00754 0.00754 0.00377	1 1 1 1 1 1 1	09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00	WG1549420 WG1549420 WG1549420 WG1549420 WG1549420	
ID ID ID ID .181 ID		0.0189 0.0189 0.00754 0.00754 0.00377	1 1 1 1 1	09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00	WG1549420 WG1549420 WG1549420 WG1549420	
ID ID ID .181 ID		0.0189 0.00754 0.00754 0.00377	1 1 1 1	09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00	WG1549420 WG1549420 WG1549420	
ID ID .181 ID		0.00754 0.00754 0.00377	1 1 1	09/29/2020 03:00 09/29/2020 03:00 09/29/2020 03:00	WG1549420 WG1549420	
ID .181 ID		0.00754 0.00377	1 1	09/29/2020 03:00 09/29/2020 03:00	WG1549420	
.181 ID		0.00377	1	09/29/2020 03:00		
ID					WG1549420	
		0.00377	1			
ID			1	09/29/2020 03:00	WG1549420	
		0.00754	1	09/29/2020 03:00	WG1549420	
ID		0.00377	1	09/29/2020 03:00	WG1549420	
ID		0.0189	1	09/29/2020 03:00	WG1549420	
ID		0.00377	1	09/29/2020 03:00	WG1549420	
ID		0.00754	1	09/29/2020 03:00	WG1549420	
ID		0.0377	1	09/29/2020 03:00	WG1549420	
ID		0.00377	1	09/29/2020 03:00	WG1549420	
ID		0.00754	1	09/29/2020 03:00	WG1549420	
.100		0.00754	1	09/29/2020 03:00	WG1549420	
ID		0.00754	1	09/29/2020 03:00	WG1549420	
.0139	В	0.00754	1	09/29/2020 03:00	WG1549420	
ID		0.00377	1	09/29/2020 03:00	WG1549420	
ID		0.00377	1	09/29/2020 03:00	WG1549420	
ID		0.00377	1	09/29/2020 03:00	WG1549420	
	D D D 100 D 0139 D D	D D D 100 D 0139 <u>B</u> D D	D 0.0377 D 0.00377 D 0.00754 100 0.00754 D 0.00754 0.00754 0.00754 0.00377 D 0.00377 D 0.00377	D 0.0377 1 D 0.00377 1 D 0.00754 1 100 0.00754 1 D 0.00377 1 D 0.00377 1 D 0.00377 1	D 0.0377 1 09/29/2020 03:00 D 0.00377 1 09/29/2020 03:00 D 0.00754 1 09/29/2020 03:00 100 0.00754 1 09/29/2020 03:00 100 0.00754 1 09/29/2020 03:00 D 0.00377 1 09/29/2020 03:00 D 0.00377 1 09/29/2020 03:00 D 0.00377 1 09/29/2020 03:00	D 0.0377 1 09/29/2020 03:00 WG1549420 D 0.00377 1 09/29/2020 03:00 WG1549420 D 0.00754 1 09/29/2020 03:00 WG1549420 100 0.00754 1 09/29/2020 03:00 WG1549420 D 0.00377 1 09/29/2020 03:00 WG1549420 D 0.00377 1 09/29/2020 03:00 WG1549420 D 0.00377 1 09/29/2020 03:00 WG1549420

SCS Engineers - KS

PROJECT: C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24

31 of 98

SAMPLE RESULTS - 08 L1264151

Volatile Organic Compounds (GC/MS) by Method 8260D

Analyte	Result (dry) mg/kg	Qualifier	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	Ср
1,1-Dichloroethene	ND		0.00377	1	09/29/2020 03:00	WG1549420	² To
cis-1,2-Dichloroethene	ND		0.00377	1	09/29/2020 03:00	WG1549420	Tc
trans-1,2-Dichloroethene	ND		0.00754	1	09/29/2020 03:00	WG1549420	2
1,2-Dichloropropane	ND		0.00754	1	09/29/2020 03:00	WG1549420	ໍSs
1,1-Dichloropropene	ND		0.00377	1	09/29/2020 03:00	WG1549420	
1,3-Dichloropropane	ND		0.00754	1	09/29/2020 03:00	WG1549420	⁴ Cr
cis-1,3-Dichloropropene	ND		0.00377	1	09/29/2020 03:00	WG1549420	CI
trans-1,3-Dichloropropene	ND		0.00754	1	09/29/2020 03:00	WG1549420	5
2,2-Dichloropropane	ND		0.00377	1	09/29/2020 03:00	WG1549420	ິSr
Di-isopropyl ether	ND		0.00151	1	09/29/2020 03:00	WG1549420	
Ethylbenzene	0.0477		0.00377	1	09/29/2020 03:00	WG1549420	6
Hexachloro-1,3-butadiene	ND		0.0377	1	09/29/2020 03:00	WG1549420	- Qu
Isopropylbenzene	0.0370		0.00377	1	09/29/2020 03:00	WG1549420	7
p-lsopropyltoluene	0.112		0.00754	1	09/29/2020 03:00	WG1549420	[′] Gl
2-Butanone (MEK)	ND		0.151	1	09/29/2020 14:55	WG1550931	
Methylene Chloride	ND		0.0377	1	09/29/2020 03:00	WG1549420	8
4-Methyl-2-pentanone (MIBK)	ND		0.0377	1	09/29/2020 03:00	WG1549420	Al
Methyl tert-butyl ether	ND		0.00151	1	09/29/2020 03:00	WG1549420	
Naphthalene	0.128		0.0189	1	09/29/2020 03:00	WG1549420	Sc
n-Propylbenzene	0.0367		0.00754	1	09/29/2020 03:00	WG1549420	
Styrene	ND		0.0189	1	09/29/2020 03:00	WG1549420	
1,1,1,2-Tetrachloroethane	ND		0.00377	1	09/29/2020 03:00	WG1549420	
1,1,2,2-Tetrachloroethane	ND		0.00377	1	09/29/2020 03:00	WG1549420	
1,1,2-Trichlorotrifluoroethane	ND		0.00377	1	09/29/2020 03:00	WG1549420	
Tetrachloroethene	ND		0.00377	1	09/29/2020 03:00	WG1549420	
Toluene	0.0350		0.00754	1	09/29/2020 03:00	WG1549420	
1,2,3-Trichlorobenzene	ND	JO	0.0189	1	09/29/2020 03:00	WG1549420	
1,2,4-Trichlorobenzene	ND		0.0189	1	09/29/2020 03:00	WG1549420	
1,1,1-Trichloroethane	ND		0.00377	1	09/29/2020 03:00	WG1549420	
1,1,2-Trichloroethane	ND		0.00377	1	09/29/2020 03:00	WG1549420	
Trichloroethene	ND		0.00151	1	09/29/2020 03:00	WG1549420	
Trichlorofluoromethane	ND		0.00377	1	09/29/2020 03:00	WG1549420	
1,2,3-Trichloropropane	ND		0.0189	1	09/29/2020 03:00	WG1549420	
1,2,4-Trimethylbenzene	0.0472		0.00754	1	09/29/2020 03:00	WG1549420	
1,2,3-Trimethylbenzene	0.0276		0.00754	1	09/29/2020 03:00	WG1549420	
1,3,5-Trimethylbenzene	0.0137		0.00754	1	09/29/2020 03:00	WG1549420	
Vinyl chloride	ND		0.00377	1	09/29/2020 03:00	WG1549420	
Xylenes, Total	0.152		0.00981	1	09/29/2020 03:00	WG1549420	
(S) Toluene-d8	106		75.0-131	·	09/29/2020 03:00	WG1549420	
(S) Toluene-d8	99.2		75.0-131		09/29/2020 14:55	WG1550931	
(S) 4-Bromofluorobenzene	107		67.0-138		09/29/2020 03:00	WG1549420	
(S) 4-Bromofluorobenzene	107		67.0-138		09/29/2020 14:55	WG1550931	
(S) 1,2-Dichloroethane-d4	89.4		70.0-130		09/29/2020 03:00	WG1549420	
(S) 1,2-Dichloroethane-d4	101		70.0-130		09/29/2020 03:00	WG1550931	

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
MRH (C9-C18)	43.4		12.2	1	09/29/2020 11:29	WG1548722
HRH (C19-C35)	301		12.2	1	09/29/2020 11:29	WG1548722
(S) 1-Chloro-octadecane	83.4		40.0-140		09/29/2020 11:29	WG1548722

PROJECT: C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Aldrin	ND		0.0244	1	09/24/2020 04:46	WG1547939	
Alpha BHC	ND		0.0244	1	09/24/2020 04:46	<u>WG1547939</u>	
Beta BHC	ND		0.0244	1	09/24/2020 04:46	WG1547939	
Delta BHC	ND		0.0244	1	09/24/2020 04:46	WG1547939	
Gamma BHC	ND		0.0244	1	09/24/2020 04:46	WG1547939	
Chlordane	ND		0.365	1	09/24/2020 04:46	WG1547939	
1,4-DDD	ND		0.0244	1	09/24/2020 04:46	WG1547939	
1,4-DDE	ND		0.0244	1	09/24/2020 04:46	WG1547939	
1,4-DDT	ND		0.0244	1	09/24/2020 04:46	WG1547939	
Dieldrin	ND		0.0244	1	09/24/2020 04:46	WG1547939	
Endosulfan I	ND		0.0244	1	09/24/2020 04:46	WG1547939	
Endosulfan II	ND		0.0244	1	09/24/2020 04:46	WG1547939	
Endosulfan sulfate	ND		0.0244	1	09/24/2020 04:46	WG1547939	
Endrin	ND		0.0244	1	09/24/2020 04:46	WG1547939	
Endrin aldehyde	ND		0.0244	1	09/24/2020 04:46	WG1547939	
Endrin ketone	ND		0.0244	1	09/24/2020 04:46	WG1547939	
Hexachlorobenzene	ND		0.0244	1	09/24/2020 04:46	WG1547939	
Heptachlor	ND		0.0244	1	09/24/2020 04:46	WG1547939	
Heptachlor epoxide	ND		0.0244	1	09/24/2020 04:46	WG1547939	
Methoxychlor	ND		0.0244	1	09/24/2020 04:46	WG1547939	
loxaphene	ND		0.487	1	09/24/2020 04:46	WG1547939	
(S) Decachlorobiphenyl	37.9		10.0-135		09/24/2020 04:46	WG1547939	
(S) Tetrachloro-m-xylene	40.1		10.0-139		09/24/2020 04:46	WG1547939	

SDG: L1264151 DATE/TIME: 09/30/20 13:24

*

Ss

Cn

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	79.7		1	09/27/2020 04:11	WG1549366	Tc

Mercury by Method 7471B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Mercury	ND		0.0502	1	09/23/2020 13:12	WG1547742

Metals (ICP) by Method 6010D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	ND		2.51	1	09/24/2020 13:21	WG1547617
Barium	169		0.628	1	09/24/2020 13:21	WG1547617
Cadmium	0.840		0.628	1	09/24/2020 13:21	WG1547617
Chromium	17.5		1.26	1	09/24/2020 13:21	WG1547617
Lead	21.9		0.628	1	09/24/2020 13:21	WG1547617
Selenium	ND		2.51	1	09/24/2020 13:21	WG1547617
Silver	ND		1.26	1	09/24/2020 13:21	WG1547617

Volatile Petroleum Hydrocarbons by Method KS LRH

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
LRH (C5-C8)	ND		7.82	1	09/24/2020 16:30	WG1548508
(S) 2,5-Dibromotoluene(FID)	87.1		70.0-130		09/24/2020 16:30	WG1548508

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	ND	JO	0.0781	1	09/29/2020 03:19	WG1549420	
Acrylonitrile	ND		0.0195	1	09/29/2020 03:19	WG1549420	
Benzene	0.0192		0.00156	1	09/29/2020 03:19	WG1549420	
Bromobenzene	ND		0.0195	1	09/29/2020 03:19	WG1549420	
Bromodichloromethane	ND		0.00390	1	09/29/2020 03:19	WG1549420	
Bromoform	ND		0.0390	1	09/29/2020 03:19	WG1549420	
Bromomethane	ND		0.0195	1	09/29/2020 03:19	WG1549420	
n-Butylbenzene	ND		0.0195	1	09/29/2020 03:19	WG1549420	
sec-Butylbenzene	ND		0.0195	1	09/29/2020 03:19	WG1549420	
tert-Butylbenzene	ND		0.00781	1	09/29/2020 03:19	WG1549420	
Carbon tetrachloride	ND		0.00781	1	09/29/2020 03:19	WG1549420	
Chlorobenzene	ND		0.00390	1	09/29/2020 03:19	WG1549420	
Chlorodibromomethane	ND		0.00390	1	09/29/2020 03:19	WG1549420	
Chloroethane	ND		0.00781	1	09/29/2020 03:19	WG1549420	
Chloroform	ND		0.00390	1	09/29/2020 03:19	WG1549420	
Chloromethane	ND		0.0195	1	09/29/2020 03:19	WG1549420	
2-Chlorotoluene	ND		0.00390	1	09/29/2020 03:19	WG1549420	
4-Chlorotoluene	ND		0.00781	1	09/29/2020 03:19	WG1549420	
1,2-Dibromo-3-Chloropropane	ND		0.0390	1	09/29/2020 03:19	WG1549420	
1,2-Dibromoethane	ND		0.00390	1	09/29/2020 03:19	WG1549420	
Dibromomethane	ND		0.00781	1	09/29/2020 03:19	WG1549420	
1,2-Dichlorobenzene	ND		0.00781	1	09/29/2020 03:19	WG1549420	
1,3-Dichlorobenzene	ND		0.00781	1	09/29/2020 03:19	WG1549420	
1,4-Dichlorobenzene	ND		0.00781	1	09/29/2020 03:19	WG1549420	
Dichlorodifluoromethane	ND		0.00390	1	09/29/2020 03:19	WG1549420	
1,1-Dichloroethane	ND		0.00390	1	09/29/2020 03:19	WG1549420	
1,2-Dichloroethane	ND		0.00390	1	09/29/2020 03:19	WG1549420	
ACCOUN	τ·		PROJEC	т·	SDG:	DATE/TIME:	PA

SCS Engineers - KS

PROJECT: C4-052-73682 SDG: L1264151 DATE/TIME: 09/30/20 13:24

34 of 98

*

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
1,1-Dichloroethene	ND		0.00390	1	09/29/2020 03:19	<u>WG1549420</u>	
cis-1,2-Dichloroethene	ND		0.00390	1	09/29/2020 03:19	<u>WG1549420</u>	
trans-1,2-Dichloroethene	ND		0.00781	1	09/29/2020 03:19	WG1549420	[
1,2-Dichloropropane	ND		0.00781	1	09/29/2020 03:19	WG1549420	
I,1-Dichloropropene	ND		0.00390	1	09/29/2020 03:19	WG1549420	L
I,3-Dichloropropane	ND		0.00781	1	09/29/2020 03:19	WG1549420	
cis-1,3-Dichloropropene	ND		0.00390	1	09/29/2020 03:19	WG1549420	
trans-1,3-Dichloropropene	ND		0.00781	1	09/29/2020 03:19	WG1549420	
2,2-Dichloropropane	ND		0.00390	1	09/29/2020 03:19	WG1549420	
Di-isopropyl ether	ND		0.00156	1	09/29/2020 03:19	WG1549420	
Ethylbenzene	0.00726		0.00390	1	09/29/2020 03:19	<u>WG1549420</u>	
Hexachloro-1,3-butadiene	ND		0.0390	1	09/29/2020 03:19	WG1549420	
sopropylbenzene	0.00506		0.00390	1	09/29/2020 03:19	WG1549420	1
o-Isopropyltoluene	ND		0.00781	1	09/29/2020 03:19	WG1549420	
2-Butanone (MEK)	ND		0.156	1	09/29/2020 15:14	WG1550931	L
Methylene Chloride	ND		0.0390	1	09/29/2020 03:19	WG1549420	
1-Methyl-2-pentanone (MIBK)	ND		0.0390	1	09/29/2020 03:19	WG1549420	
Methyl tert-butyl ether	0.00286		0.00156	1	09/29/2020 03:19	WG1549420	Г
laphthalene	0.0464		0.0195	1	09/29/2020 03:19	WG1549420	
n-Propylbenzene	0.00796		0.00781	1	09/29/2020 03:19	WG1549420	L
Styrene	ND		0.0195	1	09/29/2020 03:19	WG1549420	
,1,1,2-Tetrachloroethane	ND		0.00390	1	09/29/2020 03:19	WG1549420	
,1,2,2-Tetrachloroethane	ND		0.00390	1	09/29/2020 03:19	WG1549420	
,1,2-Trichlorotrifluoroethane	ND		0.00390	1	09/29/2020 03:19	WG1549420	
[etrachloroethene	ND		0.00390	1	09/29/2020 03:19	WG1549420	
Foluene	ND		0.00781	1	09/29/2020 03:19	WG1549420	
I,2,3-Trichlorobenzene	ND	<u>JO</u>	0.0195	1	09/29/2020 03:19	WG1549420	
I,2,4-Trichlorobenzene	ND	_	0.0195	1	09/29/2020 03:19	WG1549420	
I,1,1-Trichloroethane	ND		0.00390	1	09/29/2020 03:19	WG1549420	
I,1,2-Trichloroethane	ND		0.00390	1	09/29/2020 03:19	WG1549420	
Trichloroethene	ND		0.00156	1	09/29/2020 03:19	WG1549420	
Frichlorofluoromethane	ND		0.00390	1	09/29/2020 03:19	WG1549420	
,2,3-Trichloropropane	ND		0.0195	1	09/29/2020 03:19	WG1549420	
I,2,4-Trimethylbenzene	0.0145		0.00781	1	09/29/2020 03:19	WG1549420	
I,2,3-Trimethylbenzene	0.00810		0.00781	1	09/29/2020 03:19	WG1549420	
I,3,5-Trimethylbenzene	ND		0.00781	1	09/29/2020 03:19	WG1549420	
/inyl chloride	ND		0.00390	1	09/29/2020 03:19	WG1549420	
Kylenes, Total	0.0311		0.0101	1	09/29/2020 03:19	WG1549420	
(S) Toluene-d8	105		75.0-131		09/29/2020 03:19	WG1549420	
(S) Toluene-d8	100		75.0-131		09/29/2020 15:14	WG1550931	
(S) 4-Bromofluorobenzene	106		67.0-138		09/29/2020 03:19	WG1549420	
(S) 4-Bromofluorobenzene	110		67.0-138		09/29/2020 15:14	WG1550931	
(S) 1,2-Dichloroethane-d4	94.6		70.0-130		09/29/2020 03:19	WG1549420	
(S) 1,2-Dichloroethane-d4	105		70.0-130		09/29/2020 15:14	WG1550931	

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
MRH (C9-C18)	ND		12.6	1	09/29/2020 09:58	WG1548722
HRH (C19-C35)	18.7	B	12.6	1	09/29/2020 09:58	WG1548722
(S) 1-Chloro-octadecane	103		40.0-140		09/29/2020 09:58	WG1548722

PROJECT: C4-052-73682 SDG: L1264151 DATE/TIME: 09/30/20 13:24

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Aldrin	ND		0.0251	1	09/24/2020 05:00	WG1547939	2
Alpha BHC	ND		0.0251	1	09/24/2020 05:00	WG1547939	
Beta BHC	ND		0.0251	1	09/24/2020 05:00	WG1547939	3
Delta BHC	ND		0.0251	1	09/24/2020 05:00	WG1547939	
Gamma BHC	ND		0.0251	1	09/24/2020 05:00	WG1547939	
Chlordane	ND		0.377	1	09/24/2020 05:00	WG1547939	4
4,4-DDD	ND		0.0251	1	09/24/2020 05:00	WG1547939	
4,4-DDE	ND		0.0251	1	09/24/2020 05:00	WG1547939	
4,4-DDT	ND		0.0251	1	09/24/2020 05:00	WG1547939	ļ
Dieldrin	ND		0.0251	1	09/24/2020 05:00	WG1547939	
Endosulfan I	ND		0.0251	1	09/24/2020 05:00	WG1547939	
Endosulfan II	ND		0.0251	1	09/24/2020 05:00	WG1547939	
Endosulfan sulfate	ND		0.0251	1	09/24/2020 05:00	WG1547939	Ē
Endrin	ND		0.0251	1	09/24/2020 05:00	WG1547939	
Endrin aldehyde	ND		0.0251	1	09/24/2020 05:00	WG1547939	
Endrin ketone	ND		0.0251	1	09/24/2020 05:00	WG1547939	
Hexachlorobenzene	ND		0.0251	1	09/24/2020 05:00	WG1547939	
Heptachlor	ND		0.0251	1	09/24/2020 05:00	WG1547939	9
Heptachlor epoxide	ND		0.0251	1	09/24/2020 05:00	WG1547939	
Methoxychlor	ND		0.0251	1	09/24/2020 05:00	WG1547939	
Toxaphene	ND		0.502	1	09/24/2020 05:00	WG1547939	
(S) Decachlorobiphenyl	48.7		10.0-135		09/24/2020 05:00	WG1547939	
(S) Tetrachloro-m-xylene	51.6		10.0-139		09/24/2020 05:00	WG1547939	

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

SCS Engineers - KS

Analyte	Result (dry) mg/kg	Qualifier	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	
Acenaphthene	ND		0.0418	1	09/29/2020 15:30	WG1550290	
Acenaphthylene	ND		0.0418	1	09/29/2020 15:30	WG1550290	
Anthracene	ND		0.0418	1	09/29/2020 15:30	WG1550290	
Benzidine	ND		2.10	1	09/29/2020 15:30	WG1550290	
	ND		0.0418	1	09/29/2020 15:30		
Benzo(a)anthracene						WG1550290	
Benzo(b)fluoranthene	ND		0.0418	1	09/29/2020 15:30	WG1550290	
Benzo(k)fluoranthene	ND		0.0418	1	09/29/2020 15:30	WG1550290	
Benzo(g,h,i)perylene	ND		0.0418	1	09/29/2020 15:30	WG1550290	
Benzo(a)pyrene	ND		0.0418	1	09/29/2020 15:30	WG1550290	
Bis(2-chlorethoxy)methane	ND		0.418	1	09/29/2020 15:30	WG1550290	
Bis(2-chloroethyl)ether	ND		0.418	1	09/29/2020 15:30	<u>WG1550290</u>	
2,2-Oxybis(1-Chloropropane)	ND		0.418	1	09/29/2020 15:30	<u>WG1550290</u>	
4-Bromophenyl-phenylether	ND		0.418	1	09/29/2020 15:30	<u>WG1550290</u>	
2-Chloronaphthalene	ND		0.0418	1	09/29/2020 15:30	<u>WG1550290</u>	
4-Chlorophenyl-phenylether	ND		0.418	1	09/29/2020 15:30	WG1550290	
Chrysene	ND		0.0418	1	09/29/2020 15:30	WG1550290	
Dibenz(a,h)anthracene	ND		0.0418	1	09/29/2020 15:30	<u>WG1550290</u>	
3,3-Dichlorobenzidine	ND		0.418	1	09/29/2020 15:30	<u>WG1550290</u>	
2,4-Dinitrotoluene	ND		0.418	1	09/29/2020 15:30	<u>WG1550290</u>	
2,6-Dinitrotoluene	ND		0.418	1	09/29/2020 15:30	<u>WG1550290</u>	
Fluoranthene	ND		0.0418	1	09/29/2020 15:30	<u>WG1550290</u>	
Fluorene	ND		0.0418	1	09/29/2020 15:30	<u>WG1550290</u>	
Hexachlorobenzene	ND		0.418	1	09/29/2020 15:30	<u>WG1550290</u>	
Hexachloro-1,3-butadiene	ND		0.418	1	09/29/2020 15:30	WG1550290	
Hexachlorocyclopentadiene	ND		0.418	1	09/29/2020 15:30	WG1550290	
Hexachloroethane	ND		0.418	1	09/29/2020 15:30	WG1550290	
Indeno(1,2,3-cd)pyrene	ND		0.0418	1	09/29/2020 15:30	WG1550290	
Isophorone	ND		0.418	1	09/29/2020 15:30	WG1550290	
Naphthalene	ND		0.0418	1	09/29/2020 15:30	WG1550290	
ACCOUN	NT:		PROJEC	Т:	SDG:	DATE/TIME:	PAG

C4-052-73682

L1264151

PAGE: 36 of 98

09/30/20 13:24

SOIL DUP Collected date/time: 09/17/20 00:00

SAMPLE RESULTS - 09

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	Ср
Analyte	mg/kg		mg/kg		date / time		
Nitrobenzene	ND		0.418	1	09/29/2020 15:30	WG1550290	² Tc
n-Nitrosodimethylamine	ND		0.418	1	09/29/2020 15:30	WG1550290	10
n-Nitrosodiphenylamine	ND		0.418	1	09/29/2020 15:30	WG1550290	3
n-Nitrosodi-n-propylamine	ND		0.418	1	09/29/2020 15:30	WG1550290	ໍSs
Phenanthrene	ND		0.0418	1	09/29/2020 15:30	WG1550290	
Benzylbutyl phthalate	ND		0.418	1	09/29/2020 15:30	WG1550290	⁴Cn
Bis(2-ethylhexyl)phthalate	ND		0.418	1	09/29/2020 15:30	WG1550290	CI
Di-n-butyl phthalate	ND		0.418	1	09/29/2020 15:30	WG1550290	5
Diethyl phthalate	ND		0.418	1	09/29/2020 15:30	WG1550290	⁵Sr
Dimethyl phthalate	ND		0.418	1	09/29/2020 15:30	WG1550290	
Di-n-octyl phthalate	ND		0.418	1	09/29/2020 15:30	WG1550290	⁶ Qc
Pyrene	ND		0.0418	1	09/29/2020 15:30	WG1550290	QC
1,2,4-Trichlorobenzene	ND		0.418	1	09/29/2020 15:30	WG1550290	7
4-Chloro-3-methylphenol	ND		0.418	1	09/29/2020 15:30	WG1550290	GI
2-Chlorophenol	ND		0.418	1	09/29/2020 15:30	WG1550290	
2,4-Dichlorophenol	ND		0.418	1	09/29/2020 15:30	WG1550290	⁸ Al
2,4-Dimethylphenol	ND		0.418	1	09/29/2020 15:30	WG1550290	\sim
4,6-Dinitro-2-methylphenol	ND		0.418	1	09/29/2020 15:30	WG1550290	9
2,4-Dinitrophenol	ND		0.418	1	09/29/2020 15:30	WG1550290	Sc
2-Nitrophenol	ND		0.418	1	09/29/2020 15:30	WG1550290	
4-Nitrophenol	ND		0.418	1	09/29/2020 15:30	WG1550290	
Pentachlorophenol	ND		0.418	1	09/29/2020 15:30	WG1550290	
Phenol	ND		0.418	1	09/29/2020 15:30	WG1550290	
2,4,6-Trichlorophenol	ND		0.418	1	09/29/2020 15:30	WG1550290	
(S) Nitrobenzene-d5	45.7		10.0-122		09/29/2020 15:30	WG1550290	
(S) 2-Fluorobiphenyl	54.6		15.0-120		09/29/2020 15:30	WG1550290	
(S) p-Terphenyl-d14	62.2		10.0-120		09/29/2020 15:30	WG1550290	
(S) Phenol-d5	52.4		10.0-120		09/29/2020 15:30	WG1550290	
(S) 2-Fluorophenol	60.5		12.0-120		09/29/2020 15:30	WG1550290	
(S) 2,4,6-Tribromophenol	68.9		10.0-127		09/29/2020 15:30	WG1550290	

SDG: L1264151 DATE/TIME: 09/30/20 13:24

SAMPLE RESULTS - 10 L1264151

Mercury by Method 7470A

	Result	Qualifier RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l	ug/l		date / time		2
Mercury	ND	0.20	00 1	09/21/2020 20:49	WG1546149	Tc

Metals (ICP) by Method 6010D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Arsenic	ND		10.0	1	09/28/2020 18:31	WG1547544
Barium	ND		5.00	1	09/28/2020 18:31	WG1547544
Cadmium	ND		2.00	1	09/28/2020 18:31	WG1547544
Chromium	ND		10.0	1	09/28/2020 18:31	WG1547544
Lead	ND		6.00	1	09/28/2020 18:31	WG1547544
Selenium	15.4		10.0	1	09/28/2020 18:31	WG1547544
Silver	ND		5.00	1	09/28/2020 18:31	WG1547544

Volatile Petroleum Hydrocarbons by Method KS LRH

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Å
Analyte	ug/l		ug/l		date / time		
LRH (C5-C8)	ND		100	1	09/22/2020 21:07	WG1547271	⁹ Sc
(S) 2,5-Dibromotoluene(FID)	89.8		70.0-130		09/22/2020 21:07	WG1547271	50

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Acetone	ND		50.0	1	09/26/2020 18:07	<u>WG1549772</u>
Acrolein	ND		50.0	1	09/26/2020 18:07	WG1549772
Acrylonitrile	ND		10.0	1	09/26/2020 18:07	WG1549772
Benzene	ND		1.00	1	09/26/2020 18:07	WG1549772
Bromobenzene	ND		1.00	1	09/26/2020 18:07	WG1549772
Bromodichloromethane	ND		1.00	1	09/26/2020 18:07	WG1549772
Bromoform	ND		1.00	1	09/26/2020 18:07	WG1549772
Bromomethane	ND		5.00	1	09/26/2020 18:07	WG1549772
n-Butylbenzene	ND		1.00	1	09/26/2020 18:07	WG1549772
sec-Butylbenzene	ND		1.00	1	09/26/2020 18:07	WG1549772
tert-Butylbenzene	ND		1.00	1	09/26/2020 18:07	WG1549772
Carbon tetrachloride	ND		1.00	1	09/26/2020 18:07	WG1549772
Chlorobenzene	ND		1.00	1	09/26/2020 18:07	WG1549772
Chlorodibromomethane	ND		1.00	1	09/26/2020 18:07	WG1549772
Chloroethane	ND		5.00	1	09/26/2020 18:07	WG1549772
Chloroform	ND		5.00	1	09/26/2020 18:07	WG1549772
Chloromethane	ND	<u>J3</u>	2.50	1	09/26/2020 18:07	WG1549772
2-Chlorotoluene	ND	<u>J3</u>	1.00	1	09/26/2020 18:07	WG1549772
4-Chlorotoluene	ND	<u>J3</u>	1.00	1	09/26/2020 18:07	WG1549772
1,2-Dibromo-3-Chloropropane	ND		5.00	1	09/26/2020 18:07	WG1549772
1,2-Dibromoethane	ND		1.00	1	09/26/2020 18:07	WG1549772
Dibromomethane	ND		1.00	1	09/26/2020 18:07	WG1549772
1,2-Dichlorobenzene	ND		1.00	1	09/26/2020 18:07	WG1549772
1,3-Dichlorobenzene	ND		1.00	1	09/26/2020 18:07	WG1549772
1,4-Dichlorobenzene	ND		1.00	1	09/26/2020 18:07	WG1549772
Dichlorodifluoromethane	ND		5.00	1	09/26/2020 18:07	WG1549772
1,1-Dichloroethane	ND		1.00	1	09/26/2020 18:07	WG1549772
1,2-Dichloroethane	ND		1.00	1	09/26/2020 18:07	WG1549772
1,1-Dichloroethene	ND	<u>J3</u>	1.00	1	09/26/2020 18:07	WG1549772
cis-1,2-Dichloroethene	ND	J3	1.00	1	09/26/2020 18:07	WG1549772
trans-1,2-Dichloroethene	ND	JЗ	1.00	1	09/26/2020 18:07	WG1549772
1,2-Dichloropropane	ND		1.00	1	09/26/2020 18:07	WG1549772

ACCOUNT: SCS Engineers - KS

PROJECT: C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24

FIELD BLANK Collected date/time: 09/18/20 09:39

SAMPLE RESULTS - 10 L1264151

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		
1,1-Dichloropropene	ND		1.00	1	09/26/2020 18:07	WG1549772	² Tc
1,3-Dichloropropane	ND		1.00	1	09/26/2020 18:07	WG1549772	
cis-1,3-Dichloropropene	ND	<u>J3</u>	1.00	1	09/26/2020 18:07	WG1549772	3
trans-1,3-Dichloropropene	ND		1.00	1	09/26/2020 18:07	WG1549772	ິSs
2,2-Dichloropropane	ND		1.00	1	09/26/2020 18:07	WG1549772	
Di-isopropyl ether	ND		1.00	1	09/26/2020 18:07	WG1549772	⁴Cn
Ethylbenzene	ND		1.00	1	09/26/2020 18:07	WG1549772	CII
Hexachloro-1,3-butadiene	ND		1.00	1	09/26/2020 18:07	WG1549772	5
Isopropylbenzene	ND		1.00	1	09/26/2020 18:07	WG1549772	ືSr
p-lsopropyltoluene	ND		1.00	1	09/26/2020 18:07	WG1549772	
2-Butanone (MEK)	ND		10.0	1	09/26/2020 18:07	WG1549772	⁶ Qc
Methylene Chloride	ND	<u>J3</u>	5.00	1	09/26/2020 18:07	WG1549772	
4-Methyl-2-pentanone (MIBK)	ND		10.0	1	09/26/2020 18:07	WG1549772	7
Methyl tert-butyl ether	ND		1.00	1	09/26/2020 18:07	WG1549772	΄GΙ
Naphthalene	ND	<u>J3</u>	5.00	1	09/26/2020 18:07	WG1549772	
n-Propylbenzene	ND	<u>J3</u> J3	1.00	1	09/26/2020 18:07	WG1549772	⁸ Al
Styrene	ND		1.00	1	09/26/2020 18:07	WG1549772	
1,1,1,2-Tetrachloroethane	ND		1.00	1	09/26/2020 18:07	WG1549772	9
1,1,2,2-Tetrachloroethane	ND	<u>J3</u>	1.00	1	09/26/2020 18:07	WG1549772	Sc
1,1,2-Trichlorotrifluoroethane	ND	<u>J3</u>	1.00	1	09/26/2020 18:07	WG1549772	
Tetrachloroethene	ND		1.00	1	09/26/2020 18:07	WG1549772	
Toluene	ND		1.00	1	09/26/2020 18:07	WG1549772	
1,2,3-Trichlorobenzene	ND		1.00	1	09/26/2020 18:07	WG1549772	
1,2,4-Trichlorobenzene	ND		1.00	1	09/26/2020 18:07	WG1549772	
1,1,1-Trichloroethane	ND		1.00	1	09/26/2020 18:07	WG1549772	
1,1,2-Trichloroethane	ND		1.00	1	09/26/2020 18:07	WG1549772	
Trichloroethene	ND		1.00	1	09/26/2020 18:07	WG1549772	
Trichlorofluoromethane	ND		5.00	1	09/26/2020 18:07	WG1549772	
1,2,3-Trichloropropane	ND	<u>J3</u>	2.50	1	09/26/2020 18:07	WG1549772	
1,2,4-Trimethylbenzene	ND		1.00	1	09/26/2020 18:07	WG1549772	
1,2,3-Trimethylbenzene	ND		1.00	1	09/26/2020 18:07	WG1549772	
1,3,5-Trimethylbenzene	ND	<u>J3</u>	1.00	1	09/26/2020 18:07	WG1549772	
Vinyl chloride	ND	<u>J3 J4</u>	1.00	1	09/26/2020 18:07	WG1549772	
Xylenes, Total	ND		3.00	1	09/26/2020 18:07	WG1549772	
(S) Toluene-d8	100		80.0-120		09/26/2020 18:07	WG1549772	
(S) 4-Bromofluorobenzene	94.6		77.0-126		09/26/2020 18:07	WG1549772	
(S) 1,2-Dichloroethane-d4	122		70.0-130		09/26/2020 18:07	WG1549772	

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
MRH (C9-C18)	ND		100	1	09/23/2020 00:34	WG1546384
HRH (C19-C35)	ND		100	1	09/23/2020 00:34	WG1546384
(S) 1-Chloro-octadecane	94.5		40.0-140		09/23/2020 00:34	WG1546384

Pesticides (GC) by Method 8081

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Aldrin	ND		0.0500	1	09/25/2020 19:02	WG1547970
Alpha BHC	ND		0.0500	1	09/25/2020 19:02	WG1547970
Beta BHC	ND		0.0500	1	09/25/2020 19:02	WG1547970
Delta BHC	ND		0.0500	1	09/25/2020 19:02	WG1547970
Gamma BHC	ND		0.0500	1	09/25/2020 19:02	WG1547970
Chlordane	ND		5.00	1	09/25/2020 19:02	WG1547970
4,4-DDD	ND		0.0500	1	09/25/2020 19:02	WG1547970

ACCOUNT: SCS Engineers - KS

PROJECT: C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24

PAGE: 39 of 98

FIELD BLANK Collected date/time: 09/18/20 09:39

SAMPLE RESULTS - 10

ONE LAB. NATIONWIDE.

*

Sc

confected date/time.	0 3/10/20 0 3.3 3
Pesticides (GC)	by Method 8081

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		
4,4-DDE	ND		0.0500	1	09/25/2020 19:02	WG1547970	² Tc
4,4-DDT	ND		0.0500	1	09/25/2020 19:02	WG1547970	10
Dieldrin	ND		0.0500	1	09/25/2020 19:02	<u>WG1547970</u>	3
Endosulfan I	ND		0.0500	1	09/25/2020 19:02	<u>WG1547970</u>	³ Ss
Endosulfan II	ND		0.0500	1	09/25/2020 19:02	<u>WG1547970</u>	
Endosulfan sulfate	ND		0.0500	1	09/25/2020 19:02	<u>WG1547970</u>	⁴ Cn
Endrin	ND		0.0500	1	09/25/2020 19:02	<u>WG1547970</u>	On
Endrin aldehyde	ND		0.0500	1	09/25/2020 19:02	<u>WG1547970</u>	5
Endrin ketone	ND		0.0500	1	09/25/2020 19:02	<u>WG1547970</u>	⁵Sr
Heptachlor	ND		0.0500	1	09/25/2020 19:02	<u>WG1547970</u>	
Heptachlor epoxide	ND		0.0500	1	09/25/2020 19:02	<u>WG1547970</u>	⁶ Qc
Hexachlorobenzene	ND		0.0500	1	09/25/2020 19:02	<u>WG1547970</u>	40
Methoxychlor	ND		0.0500	1	09/25/2020 19:02	<u>WG1547970</u>	7
Toxaphene	ND		0.500	1	09/25/2020 19:02	WG1547970	΄GΙ
(S) Decachlorobiphenyl	75.8		10.0-128		09/25/2020 19:02	WG1547970	
(S) Tetrachloro-m-xylene	66.9		10.0-127		09/25/2020 19:02	WG1547970	⁸ Al

Polychlorinated Biphenyls (GC) by Method 8082

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
PCB 1016	ND		0.500	1	09/25/2020 12:49	WG1547970
PCB 1221	ND		0.500	1	09/25/2020 12:49	WG1547970
PCB 1232	ND		0.500	1	09/25/2020 12:49	WG1547970
PCB 1242	ND		0.500	1	09/25/2020 12:49	WG1547970
PCB 1248	ND		0.500	1	09/25/2020 12:49	WG1547970
PCB 1254	ND		0.500	1	09/25/2020 12:49	WG1547970
PCB 1260	ND		0.500	1	09/25/2020 12:49	WG1547970
(S) Decachlorobiphenyl	69.6		10.0-128		09/25/2020 12:49	WG1547970
(S) Tetrachloro-m-xylene	63.3		10.0-127		09/25/2020 12:49	WG1547970

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Acenaphthene	ND		1.00	1	09/24/2020 18:18	WG1548358
Acenaphthylene	ND		1.00	1	09/24/2020 18:18	WG1548358
Anthracene	ND		1.00	1	09/24/2020 18:18	WG1548358
Benzidine	ND		10.0	1	09/24/2020 18:18	WG1548358
Benzo(a)anthracene	ND		1.00	1	09/24/2020 18:18	WG1548358
Benzo(b)fluoranthene	ND		1.00	1	09/24/2020 18:18	WG1548358
Benzo(k)fluoranthene	ND		1.00	1	09/24/2020 18:18	WG1548358
Benzo(g,h,i)perylene	ND		1.00	1	09/24/2020 18:18	WG1548358
Benzo(a)pyrene	ND		1.00	1	09/24/2020 18:18	WG1548358
Bis(2-chlorethoxy)methane	ND		10.0	1	09/24/2020 18:18	WG1548358
Bis(2-chloroethyl)ether	ND		10.0	1	09/24/2020 18:18	WG1548358
2,2-Oxybis(1-Chloropropane)	ND		10.0	1	09/24/2020 18:18	WG1548358
4-Bromophenyl-phenylether	ND		10.0	1	09/24/2020 18:18	WG1548358
2-Chloronaphthalene	ND		1.00	1	09/24/2020 18:18	WG1548358
4-Chlorophenyl-phenylether	ND		10.0	1	09/24/2020 18:18	WG1548358
Chrysene	ND		1.00	1	09/24/2020 18:18	WG1548358
Dibenz(a,h)anthracene	ND		1.00	1	09/24/2020 18:18	WG1548358
1,2-Dichlorobenzene	ND		10.0	1	09/24/2020 18:18	WG1548358
1,3-Dichlorobenzene	ND		10.0	1	09/24/2020 18:18	WG1548358
1,4-Dichlorobenzene	ND		10.0	1	09/24/2020 18:18	WG1548358
3,3-Dichlorobenzidine	ND		10.0	1	09/24/2020 18:18	WG1548358
2,4-Dinitrotoluene	ND		10.0	1	09/24/2020 18:18	WG1548358

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1264151 DATE/TIME: 09/30/20 13:24

FIELD BLANK Collected date/time: 09/18/20 09:39

SAMPLE RESULTS - 10 L1264151

¥

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		
2,6-Dinitrotoluene	ND		10.0	1	09/24/2020 18:18	WG1548358	² Tc
Fluoranthene	ND		1.00	1	09/24/2020 18:18	WG1548358	
Fluorene	ND		1.00	1	09/24/2020 18:18	WG1548358	3
Hexachlorobenzene	ND		1.00	1	09/24/2020 18:18	WG1548358	ິSs
Hexachloro-1,3-butadiene	ND		10.0	1	09/24/2020 18:18	WG1548358	
Hexachlorocyclopentadiene	ND		10.0	1	09/24/2020 18:18	WG1548358	⁴ Cn
Hexachloroethane	ND		10.0	1	09/24/2020 18:18	WG1548358	CIT
Indeno(1,2,3-cd)pyrene	ND		1.00	1	09/24/2020 18:18	<u>WG1548358</u>	5
Isophorone	ND		10.0	1	09/24/2020 18:18	WG1548358	ືSr
Naphthalene	ND		1.00	1	09/24/2020 18:18	<u>WG1548358</u>	
Nitrobenzene	ND		10.0	1	09/24/2020 18:18	WG1548358	⁶ Qc
n-Nitrosodimethylamine	ND		10.0	1	09/24/2020 18:18	<u>WG1548358</u>	de
n-Nitrosodiphenylamine	ND		10.0	1	09/24/2020 18:18	WG1548358	7
n-Nitrosodi-n-propylamine	ND		10.0	1	09/24/2020 18:18	<u>WG1548358</u>	[′] GI
Phenanthrene	ND		1.00	1	09/24/2020 18:18	WG1548358	
Benzylbutyl phthalate	ND		3.00	1	09/24/2020 18:18	WG1548358	⁸ Al
Bis(2-ethylhexyl)phthalate	ND		3.00	1	09/24/2020 18:18	WG1548358	
Di-n-butyl phthalate	ND		3.00	1	09/24/2020 18:18	WG1548358	9
Diethyl phthalate	ND		3.00	1	09/24/2020 18:18	WG1548358	ٌSc
Dimethyl phthalate	ND		3.00	1	09/24/2020 18:18	WG1548358	
Di-n-octyl phthalate	ND		3.00	1	09/24/2020 18:18	WG1548358	
Pyrene	ND		1.00	1	09/24/2020 18:18	WG1548358	
1,2,4-Trichlorobenzene	ND		10.0	1	09/24/2020 18:18	WG1548358	
4-Chloro-3-methylphenol	ND		10.0	1	09/24/2020 18:18	WG1548358	
2-Chlorophenol	ND		10.0	1	09/24/2020 18:18	WG1548358	
2,4-Dichlorophenol	ND		10.0	1	09/24/2020 18:18	WG1548358	
2,4-Dimethylphenol	ND		10.0	1	09/24/2020 18:18	WG1548358	
4,6-Dinitro-2-methylphenol	ND		10.0	1	09/24/2020 18:18	WG1548358	
2,4-Dinitrophenol	ND		10.0	1	09/24/2020 18:18	WG1548358	
2-Nitrophenol	ND		10.0	1	09/24/2020 18:18	WG1548358	
4-Nitrophenol	ND		10.0	1	09/24/2020 18:18	WG1548358	
Pentachlorophenol	ND		10.0	1	09/24/2020 18:18	WG1548358	
Phenol	ND		10.0	1	09/24/2020 18:18	WG1548358	
2,4,6-Trichlorophenol	ND		10.0	1	09/24/2020 18:18	WG1548358	
(S) 2-Fluorophenol	24.9		10.0-120		09/24/2020 18:18	WG1548358	
(S) Phenol-d5	16.3		10.0-120		09/24/2020 18:18	WG1548358	
(S) Nitrobenzene-d5	48.4		10.0-127		09/24/2020 18:18	WG1548358	
(S) 2-Fluorobiphenyl	54.5		10.0-130		09/24/2020 18:18	WG1548358	
(S) 2,4,6-Tribromophenol	60.0		10.0-155		09/24/2020 18:18	WG1548358	
(S) p-Terphenyl-d14	76.7		10.0-128		09/24/2020 18:18	WG1548358	

SDG: L1264151

DATE/TIME: 09/30/20 13:24

SAMPLE RESULTS - 11 L1264151

Mercury by Method 7470A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	ug/l		ug/l		date / time		2
Mercury	ND		0.200	1	09/21/2020 20:51	WG1546149	Tc

Metals (ICP) by Method 6010D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Arsenic	ND		10.0	1	09/28/2020 18:34	WG1547544
Barium	ND		5.00	1	09/28/2020 18:34	WG1547544
Cadmium	ND		2.00	1	09/28/2020 18:34	WG1547544
Chromium	ND		10.0	1	09/28/2020 18:34	WG1547544
Lead	ND		6.00	1	09/28/2020 18:34	WG1547544
Selenium	ND		10.0	1	09/28/2020 18:34	WG1547544
Silver	ND		5.00	1	09/28/2020 18:34	WG1547544

Volatile Petroleum Hydrocarbons by Method KS LRH

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Å
Analyte	ug/l		ug/l		date / time		
LRH (C5-C8)	ND		100	1	09/22/2020 21:44	WG1547271	9 S C
(S) 2,5-Dibromotoluene(FID)	91.2		70.0-130		09/22/2020 21:44	WG1547271	50

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Acetone	ND		50.0	1	09/26/2020 18:27	WG1549772
Acrolein	ND		50.0	1	09/26/2020 18:27	WG1549772
Acrylonitrile	ND		10.0	1	09/26/2020 18:27	WG1549772
Benzene	ND		1.00	1	09/26/2020 18:27	WG1549772
Bromobenzene	ND		1.00	1	09/26/2020 18:27	WG1549772
Bromodichloromethane	ND		1.00	1	09/26/2020 18:27	WG1549772
Bromoform	ND		1.00	1	09/26/2020 18:27	WG1549772
Bromomethane	ND		5.00	1	09/26/2020 18:27	WG1549772
n-Butylbenzene	ND		1.00	1	09/26/2020 18:27	WG1549772
sec-Butylbenzene	ND		1.00	1	09/26/2020 18:27	WG1549772
tert-Butylbenzene	ND		1.00	1	09/26/2020 18:27	WG1549772
Carbon tetrachloride	ND		1.00	1	09/26/2020 18:27	WG1549772
Chlorobenzene	ND		1.00	1	09/26/2020 18:27	WG1549772
Chlorodibromomethane	ND		1.00	1	09/26/2020 18:27	WG1549772
Chloroethane	ND		5.00	1	09/26/2020 18:27	WG1549772
Chloroform	ND		5.00	1	09/26/2020 18:27	WG1549772
Chloromethane	ND	<u>J3</u>	2.50	1	09/26/2020 18:27	WG1549772
2-Chlorotoluene	ND	J3	1.00	1	09/26/2020 18:27	WG1549772
4-Chlorotoluene	ND	J3	1.00	1	09/26/2020 18:27	WG1549772
1,2-Dibromo-3-Chloropropane	ND		5.00	1	09/26/2020 18:27	WG1549772
1,2-Dibromoethane	ND		1.00	1	09/26/2020 18:27	WG1549772
Dibromomethane	ND		1.00	1	09/26/2020 18:27	WG1549772
1,2-Dichlorobenzene	ND		1.00	1	09/26/2020 18:27	WG1549772
1,3-Dichlorobenzene	ND		1.00	1	09/26/2020 18:27	WG1549772
1,4-Dichlorobenzene	ND		1.00	1	09/26/2020 18:27	WG1549772
Dichlorodifluoromethane	ND		5.00	1	09/26/2020 18:27	WG1549772
1,1-Dichloroethane	ND		1.00	1	09/26/2020 18:27	WG1549772
1,2-Dichloroethane	ND		1.00	1	09/26/2020 18:27	WG1549772
1,1-Dichloroethene	ND	J3	1.00	1	09/26/2020 18:27	WG1549772
cis-1,2-Dichloroethene	ND	<u>J3</u>	1.00	1	09/26/2020 18:27	WG1549772
trans-1,2-Dichloroethene	ND	J3	1.00	1	09/26/2020 18:27	WG1549772
1,2-Dichloropropane	ND		1.00	1	09/26/2020 18:27	WG1549772

ACCOUNT: SCS Engineers - KS

PROJECT: C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24 PAGE:

42 of 98

EQUIP BLANK Collected date/time: 09/18/20 09:57

SAMPLE RESULTS - 11 L1264151

¥

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	C
Analyte	ug/l		ug/l		date / time		
1,1-Dichloropropene	ND		1.00	1	09/26/2020 18:27	WG1549772	² T
1,3-Dichloropropane	ND		1.00	1	09/26/2020 18:27	WG1549772	
cis-1,3-Dichloropropene	ND	<u>J3</u>	1.00	1	09/26/2020 18:27	WG1549772	3
trans-1,3-Dichloropropene	ND		1.00	1	09/26/2020 18:27	WG1549772	[°] S
2,2-Dichloropropane	ND		1.00	1	09/26/2020 18:27	WG1549772	
Di-isopropyl ether	ND		1.00	1	09/26/2020 18:27	WG1549772	⁴ C
Ethylbenzene	ND		1.00	1	09/26/2020 18:27	WG1549772	
Hexachloro-1,3-butadiene	ND		1.00	1	09/26/2020 18:27	WG1549772	5
Isopropylbenzene	ND		1.00	1	09/26/2020 18:27	WG1549772	ຶSi
p-lsopropyltoluene	ND		1.00	1	09/26/2020 18:27	WG1549772	
2-Butanone (MEK)	ND		10.0	1	09/26/2020 18:27	WG1549772	⁶ Q
Methylene Chloride	ND	<u>J3</u>	5.00	1	09/26/2020 18:27	WG1549772	
4-Methyl-2-pentanone (MIBK)	ND		10.0	1	09/26/2020 18:27	WG1549772	7
Methyl tert-butyl ether	ND		1.00	1	09/26/2020 18:27	WG1549772	Í G
Naphthalene	ND	<u>J3</u>	5.00	1	09/26/2020 18:27	WG1549772	
n-Propylbenzene	ND	<u>J3</u>	1.00	1	09/26/2020 18:27	WG1549772	⁸ A
Styrene	ND		1.00	1	09/26/2020 18:27	WG1549772	
1,1,1,2-Tetrachloroethane	ND		1.00	1	09/26/2020 18:27	WG1549772	9
1,1,2,2-Tetrachloroethane	ND	<u>J3</u>	1.00	1	09/26/2020 18:27	WG1549772	°S
1,1,2-Trichlorotrifluoroethane	ND	<u>J3</u>	1.00	1	09/26/2020 18:27	WG1549772	
Tetrachloroethene	ND		1.00	1	09/26/2020 18:27	WG1549772	
Toluene	ND		1.00	1	09/26/2020 18:27	WG1549772	
1,2,3-Trichlorobenzene	ND		1.00	1	09/26/2020 18:27	WG1549772	
1,2,4-Trichlorobenzene	ND		1.00	1	09/26/2020 18:27	WG1549772	
1,1,1-Trichloroethane	ND		1.00	1	09/26/2020 18:27	WG1549772	
1,1,2-Trichloroethane	ND		1.00	1	09/26/2020 18:27	WG1549772	
Trichloroethene	ND		1.00	1	09/26/2020 18:27	WG1549772	
Trichlorofluoromethane	ND		5.00	1	09/26/2020 18:27	WG1549772	
1,2,3-Trichloropropane	ND	<u>J3</u>	2.50	1	09/26/2020 18:27	WG1549772	
1,2,4-Trimethylbenzene	ND		1.00	1	09/26/2020 18:27	WG1549772	
1,2,3-Trimethylbenzene	ND		1.00	1	09/26/2020 18:27	WG1549772	
1,3,5-Trimethylbenzene	ND	<u>J3</u>	1.00	1	09/26/2020 18:27	WG1549772	
Vinyl chloride	ND	<u>J3 J4</u>	1.00	1	09/26/2020 18:27	WG1549772	
Xylenes, Total	ND		3.00	1	09/26/2020 18:27	WG1549772	
(S) Toluene-d8	93.9		80.0-120		09/26/2020 18:27	WG1549772	
(S) 4-Bromofluorobenzene	97.4		77.0-126		09/26/2020 18:27	WG1549772	
(S) 1,2-Dichloroethane-d4	124		70.0-130		09/26/2020 18:27	WG1549772	

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
MRH (C9-C18)	ND		100	1	09/23/2020 00:57	WG1546384
HRH (C19-C35)	ND		100	1	09/23/2020 00:57	WG1546384
(S) 1-Chloro-octadecane	97.1		40.0-140		09/23/2020 00:57	WG1546384

Pesticides (GC) by Method 8081

Aldrin ND 0.0500 1 09/25/2020 19:15 WG1547 Alpha BHC ND 0.0500 1 09/25/2020 19:15 WG1547 Beta BHC ND 0.0500 1 09/25/2020 19:15 WG1547 Delta BHC ND 0.0500 1 09/25/2020 19:15 WG1547 Gamma BHC ND 0.0500 1 09/25/2020 19:15 WG1547		F	Result	Qualifier	RDL	Dilution	Analysis	Batch
Alpha BHC ND 0.0500 1 09/25/2020 19:15 WG1547 Beta BHC ND 0.0500 1 09/25/2020 19:15 WG1547 Delta BHC ND 0.0500 1 09/25/2020 19:15 WG1547 Gamma BHC ND 0.0500 1 09/25/2020 19:15 WG1547	Analyte	ι	ug/l		ug/l		date / time	
Beta BHC ND 0.0500 1 09/25/2020 19:15 WG1547 Delta BHC ND 0.0500 1 09/25/2020 19:15 WG1547 Gamma BHC ND 0.0500 1 09/25/2020 19:15 WG1547	Aldrin	1	ND		0.0500	1	09/25/2020 19:15	WG1547970
Delta BHC ND 0.0500 1 09/25/2020 19:15 WG1547 Gamma BHC ND 0.0500 1 09/25/2020 19:15 WG1547	Alpha BHC	1	ND		0.0500	1	09/25/2020 19:15	WG1547970
Gamma BHC ND 0.0500 1 09/25/2020 19:15 WG1547	Beta BHC	1	ND		0.0500	1	09/25/2020 19:15	WG1547970
	Delta BHC	1	ND		0.0500	1	09/25/2020 19:15	WG1547970
Chlordane ND 5.00 1 09/25/2020 19:15 WG1547	Gamma BHC	1	ND		0.0500	1	09/25/2020 19:15	WG1547970
	Chlordane	1	ND		5.00	1	09/25/2020 19:15	WG1547970
4,4-DDD ND 0.0500 1 09/25/2020 19:15 WG1547	4,4-DDD	1	ND		0.0500	1	09/25/2020 19:15	WG1547970

ACCOUNT: SCS Engineers - KS

PROJECT: C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24

PAGE: 43 of 98

EQUIP BLANK Collected date/time: 09/18/20 09:57

SAMPLE RESULTS - 11 L1264151

Pesticides (GC) by Method 8081

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		
4,4-DDE	ND		0.0500	1	09/25/2020 19:15	WG1547970 2	Tc
4,4-DDT	ND		0.0500	1	09/25/2020 19:15	<u>WG1547970</u>	10
Dieldrin	ND		0.0500	1	09/25/2020 19:15	<u>WG1547970</u>	3
Endosulfan I	ND		0.0500	1	09/25/2020 19:15	WG1547970	Ss
Endosulfan II	ND		0.0500	1	09/25/2020 19:15	WG1547970	
Endosulfan sulfate	ND		0.0500	1	09/25/2020 19:15	WG1547970 4	Cn
Endrin	ND		0.0500	1	09/25/2020 19:15	WG1547970	011
Endrin aldehyde	ND		0.0500	1	09/25/2020 19:15	WG1547970	5
Endrin ketone	ND		0.0500	1	09/25/2020 19:15	WG1547970	Sr
Heptachlor	ND		0.0500	1	09/25/2020 19:15	WG1547970	
Heptachlor epoxide	ND		0.0500	1	09/25/2020 19:15	WG1547970 6	Qc
Hexachlorobenzene	ND		0.0500	1	09/25/2020 19:15	WG1547970	40
Methoxychlor	ND		0.0500	1	09/25/2020 19:15	<u>WG1547970</u>	7
Toxaphene	ND		0.500	1	09/25/2020 19:15	WG1547970	GI
(S) Decachlorobiphenyl	82.7		10.0-128		09/25/2020 19:15	<u>WG1547970</u>	
(S) Tetrachloro-m-xylene	65.8		10.0-127		09/25/2020 19:15	WG1547970 8	ΔΙ

Polychlorinated Biphenyls (GC) by Method 8082

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
PCB 1016	ND		0.500	1	09/25/2020 13:03	WG1547970
PCB 1221	ND		0.500	1	09/25/2020 13:03	WG1547970
PCB 1232	ND		0.500	1	09/25/2020 13:03	WG1547970
PCB 1242	ND		0.500	1	09/25/2020 13:03	WG1547970
PCB 1248	ND		0.500	1	09/25/2020 13:03	WG1547970
PCB 1254	ND		0.500	1	09/25/2020 13:03	WG1547970
PCB 1260	ND		0.500	1	09/25/2020 13:03	WG1547970
(S) Decachlorobiphenyl	76.3		10.0-128		09/25/2020 13:03	WG1547970
(S) Tetrachloro-m-xylene	69.0		10.0-127		09/25/2020 13:03	WG1547970

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Acenaphthene	ND		1.00	1	09/25/2020 16:43	WG1548605
Acenaphthylene	ND		1.00	1	09/25/2020 16:43	WG1548605
Anthracene	ND		1.00	1	09/25/2020 16:43	WG1548605
Benzidine	ND		10.0	1	09/25/2020 16:43	WG1548605
Benzo(a)anthracene	ND		1.00	1	09/25/2020 16:43	WG1548605
Benzo(b)fluoranthene	ND		1.00	1	09/25/2020 16:43	<u>WG1548605</u>
Benzo(k)fluoranthene	ND		1.00	1	09/25/2020 16:43	WG1548605
Benzo(g,h,i)perylene	ND		1.00	1	09/25/2020 16:43	<u>WG1548605</u>
Benzo(a)pyrene	ND		1.00	1	09/25/2020 16:43	WG1548605
Bis(2-chlorethoxy)methane	ND		10.0	1	09/25/2020 16:43	<u>WG1548605</u>
Bis(2-chloroethyl)ether	ND		10.0	1	09/25/2020 16:43	WG1548605
2,2-Oxybis(1-Chloropropane)	ND		10.0	1	09/25/2020 16:43	<u>WG1548605</u>
4-Bromophenyl-phenylether	ND		10.0	1	09/25/2020 16:43	WG1548605
2-Chloronaphthalene	ND		1.00	1	09/25/2020 16:43	<u>WG1548605</u>
4-Chlorophenyl-phenylether	ND		10.0	1	09/25/2020 16:43	WG1548605
Chrysene	ND		1.00	1	09/25/2020 16:43	<u>WG1548605</u>
Dibenz(a,h)anthracene	ND		1.00	1	09/25/2020 16:43	WG1548605
1,2-Dichlorobenzene	ND		10.0	1	09/25/2020 16:43	WG1548605
1,3-Dichlorobenzene	ND		10.0	1	09/25/2020 16:43	WG1548605
1,4-Dichlorobenzene	ND		10.0	1	09/25/2020 16:43	WG1548605
3,3-Dichlorobenzidine	ND		10.0	1	09/25/2020 16:43	WG1548605
2,4-Dinitrotoluene	ND		10.0	1	09/25/2020 16:43	WG1548605

ACCOUNT: SCS Engineers - KS

PROJECT: C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24 PAGE:

44 of 98

ONE LAB. NATIONWIDE.

Sc

EQUIP BLANK Collected date/time: 09/18/20 09:57

SAMPLE RESULTS - 11 L1264151

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		
2,6-Dinitrotoluene	ND		10.0	1	09/25/2020 16:43	WG1548605	² Tc
Fluoranthene	ND		1.00	1	09/25/2020 16:43	WG1548605	TC
Fluorene	ND		1.00	1	09/25/2020 16:43	WG1548605	3
Hexachlorobenzene	ND		1.00	1	09/25/2020 16:43	WG1548605	Šs
Hexachloro-1,3-butadiene	ND		10.0	1	09/25/2020 16:43	WG1548605	
Hexachlorocyclopentadiene	ND		10.0	1	09/25/2020 16:43	WG1548605	⁴ Cn
Hexachloroethane	ND		10.0	1	09/25/2020 16:43	WG1548605	CIT
Indeno(1,2,3-cd)pyrene	ND		1.00	1	09/25/2020 16:43	WG1548605	5
Isophorone	ND		10.0	1	09/25/2020 16:43	WG1548605	°Sr
Naphthalene	ND		1.00	1	09/25/2020 16:43	WG1548605	
Nitrobenzene	ND		10.0	1	09/25/2020 16:43	WG1548605	⁶ Qc
n-Nitrosodimethylamine	ND		10.0	1	09/25/2020 16:43	WG1548605	ac
n-Nitrosodiphenylamine	ND		10.0	1	09/25/2020 16:43	WG1548605	7
n-Nitrosodi-n-propylamine	ND		10.0	1	09/25/2020 16:43	WG1548605	[′] Gl
Phenanthrene	ND		1.00	1	09/25/2020 16:43	WG1548605	
Benzylbutyl phthalate	ND		3.00	1	09/25/2020 16:43	WG1548605	⁸ Al
Bis(2-ethylhexyl)phthalate	ND		3.00	1	09/25/2020 16:43	WG1548605	7.4
Di-n-butyl phthalate	ND		3.00	1	09/25/2020 16:43	WG1548605	9
Diethyl phthalate	ND		3.00	1	09/25/2020 16:43	WG1548605	ຶSc
Dimethyl phthalate	ND		3.00	1	09/25/2020 16:43	WG1548605	
Di-n-octyl phthalate	ND		3.00	1	09/25/2020 16:43	WG1548605	
Pyrene	ND		1.00	1	09/25/2020 16:43	WG1548605	
1,2,4-Trichlorobenzene	ND		10.0	1	09/25/2020 16:43	WG1548605	
4-Chloro-3-methylphenol	ND		10.0	1	09/25/2020 16:43	WG1548605	
2-Chlorophenol	ND		10.0	1	09/25/2020 16:43	WG1548605	
2,4-Dichlorophenol	ND		10.0	1	09/25/2020 16:43	WG1548605	
2,4-Dimethylphenol	ND		10.0	1	09/25/2020 16:43	WG1548605	
4,6-Dinitro-2-methylphenol	ND		10.0	1	09/25/2020 16:43	WG1548605	
2,4-Dinitrophenol	ND		10.0	1	09/25/2020 16:43	WG1548605	
2-Nitrophenol	ND		10.0	1	09/25/2020 16:43	WG1548605	
4-Nitrophenol	ND		10.0	1	09/25/2020 16:43	WG1548605	
Pentachlorophenol	ND		10.0	1	09/25/2020 16:43	WG1548605	
Phenol	ND		10.0	1	09/25/2020 16:43	WG1548605	
2,4,6-Trichlorophenol	ND		10.0	1	09/25/2020 16:43	WG1548605	
(S) 2-Fluorophenol	29.7		10.0-120		09/25/2020 16:43	WG1548605	
(S) Phenol-d5	19.5		10.0-120		09/25/2020 16:43	WG1548605	
(S) Nitrobenzene-d5	54.5		10.0-127		09/25/2020 16:43	WG1548605	
(S) 2-Fluorobiphenyl	58.6		10.0-130		09/25/2020 16:43	WG1548605	
(S) 2,4,6-Tribromophenol	47.6		10.0-155		09/25/2020 16:43	WG1548605	
(S) p-Terphenyl-d14	63.5		10.0-128		09/25/2020 16:43	WG1548605	

SDG: L1264151

DATE/TIME: 09/30/20 13:24

SCS Engineers - KS

SAMPLE RESULTS - 12

₩

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Acetone	ND		50.0	1	09/26/2020 18:46	WG1549772	Ť٢
Acrolein	ND		50.0	1	09/26/2020 18:46	WG1549772	
Acrylonitrile	ND		10.0	1	09/26/2020 18:46	WG1549772	³ Ss
Benzene	ND		1.00	1	09/26/2020 18:46	WG1549772	00
Bromobenzene	ND		1.00	1	09/26/2020 18:46	WG1549772	4
Bromodichloromethane	ND		1.00	1	09/26/2020 18:46	WG1549772	Cr
Bromoform	ND		1.00	1	09/26/2020 18:46	WG1549772	
Bromomethane	ND		5.00	1	09/26/2020 18:46	WG1549772	⁵Sr
n-Butylbenzene	ND		1.00	1	09/26/2020 18:46	WG1549772	
sec-Butylbenzene	ND		1.00	1	09/26/2020 18:46	WG1549772	6
tert-Butylbenzene	ND		1.00	1	09/26/2020 18:46	WG1549772	۵
Carbon tetrachloride	ND		1.00	1	09/26/2020 18:46	WG1549772	
Chlorobenzene	ND		1.00	1	09/26/2020 18:46	WG1549772	⁷ Gl
Chlorodibromomethane	ND		1.00	1	09/26/2020 18:46	WG1549772	G
Chloroethane	ND		5.00	1	09/26/2020 18:46	WG1549772	
Chloroform	ND		5.00	1	09/26/2020 18:46	WG1549772	Å
Chloromethane	ND	<u>J3</u>	2.50	1	09/26/2020 18:46	WG1549772	
2-Chlorotoluene	ND	J3	1.00	1	09/26/2020 18:46	WG1549772	9
4-Chlorotoluene	ND	<u>J3</u>	1.00	1	09/26/2020 18:46	WG1549772	Sc
1,2-Dibromo-3-Chloropropane	ND		5.00	1	09/26/2020 18:46	WG1549772	
1,2-Dibromoethane	ND		1.00	1	09/26/2020 18:46	WG1549772	
Dibromomethane	ND		1.00	1	09/26/2020 18:46	WG1549772	
1,2-Dichlorobenzene	ND		1.00	1	09/26/2020 18:46	WG1549772	
1,3-Dichlorobenzene	ND		1.00	1	09/26/2020 18:46	WG1549772	
1,4-Dichlorobenzene	ND		1.00	1	09/26/2020 18:46	WG1549772	
Dichlorodifluoromethane	ND			1			
	ND		5.00 1.00	1	09/26/2020 18:46	WG1549772	
1,1-Dichloroethane					09/26/2020 18:46	WG1549772	
1,2-Dichloroethane	ND	10	1.00	1	09/26/2020 18:46	WG1549772	
1,1-Dichloroethene	ND	<u>J3</u>	1.00	1	09/26/2020 18:46	WG1549772	
cis-1,2-Dichloroethene	ND	<u>J3</u>	1.00	1	09/26/2020 18:46	WG1549772	
trans-1,2-Dichloroethene	ND	<u>J3</u>	1.00	1	09/26/2020 18:46	WG1549772	
1,2-Dichloropropane	ND		1.00	1	09/26/2020 18:46	WG1549772	
1,1-Dichloropropene	ND		1.00	1	09/26/2020 18:46	WG1549772	
1,3-Dichloropropane	ND		1.00	1	09/26/2020 18:46	WG1549772	
cis-1,3-Dichloropropene	ND	<u>J3</u>	1.00	1	09/26/2020 18:46	WG1549772	
trans-1,3-Dichloropropene	ND		1.00	1	09/26/2020 18:46	WG1549772	
2,2-Dichloropropane	ND		1.00	1	09/26/2020 18:46	<u>WG1549772</u>	
Di-isopropyl ether	ND		1.00	1	09/26/2020 18:46	<u>WG1549772</u>	
Ethylbenzene	ND		1.00	1	09/26/2020 18:46	<u>WG1549772</u>	
Hexachloro-1,3-butadiene	ND		1.00	1	09/26/2020 18:46	WG1549772	
Isopropylbenzene	ND		1.00	1	09/26/2020 18:46	<u>WG1549772</u>	
p-Isopropyltoluene	ND		1.00	1	09/26/2020 18:46	WG1549772	
2-Butanone (MEK)	ND		10.0	1	09/26/2020 18:46	WG1549772	
Methylene Chloride	ND	<u>J3</u>	5.00	1	09/26/2020 18:46	WG1549772	
4-Methyl-2-pentanone (MIBK)	ND		10.0	1	09/26/2020 18:46	WG1549772	
Methyl tert-butyl ether	ND		1.00	1	09/26/2020 18:46	WG1549772	
Naphthalene	ND	<u>J3</u>	5.00	1	09/26/2020 18:46	WG1549772	
n-Propylbenzene	ND	J3	1.00	1	09/26/2020 18:46	WG1549772	
Styrene	ND		1.00	1	09/26/2020 18:46	WG1549772	
1,1,1,2-Tetrachloroethane	ND		1.00	1	09/26/2020 18:46	WG1549772	
1,1,2,2-Tetrachloroethane	ND	<u>J3</u>	1.00	1	09/26/2020 18:46	WG1549772	
1,1,2-Trichlorotrifluoroethane	ND	J3	1.00	1	09/26/2020 18:46	WG1549772	
Tetrachloroethene	ND	_	1.00	1	09/26/2020 18:46	WG1549772	
Toluene	ND		1.00	1	09/26/2020 18:46	WG1549772	
1,2,3-Trichlorobenzene	ND		1.00	1	09/26/2020 18:46	WG1549772	
1,2,3-1101000012010							
1,2,4-Trichlorobenzene	ND		1.00	1	09/26/2020 18:46	WG1549772	

C4-052-73682

L1264151

09/30/20 13:24

PAGE: 46 of 98

Â

Sc

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	((
Analyte	ug/l		ug/l		date / time		
1,1,1-Trichloroethane	ND		1.00	1	09/26/2020 18:46	WG1549772	2
1,1,2-Trichloroethane	ND		1.00	1	09/26/2020 18:46	WG1549772	
Trichloroethene	ND		1.00	1	09/26/2020 18:46	WG1549772	3
Trichlorofluoromethane	ND		5.00	1	09/26/2020 18:46	WG1549772	3
1,2,3-Trichloropropane	ND	<u>J3</u>	2.50	1	09/26/2020 18:46	WG1549772	
1,2,4-Trimethylbenzene	ND		1.00	1	09/26/2020 18:46	WG1549772	4
1,2,3-Trimethylbenzene	ND		1.00	1	09/26/2020 18:46	WG1549772	
1,3,5-Trimethylbenzene	ND	<u>J3</u>	1.00	1	09/26/2020 18:46	WG1549772	5
Vinyl chloride	ND	<u>J3 J4</u>	1.00	1	09/26/2020 18:46	WG1549772	5
Xylenes, Total	ND		3.00	1	09/26/2020 18:46	WG1549772	
(S) Toluene-d8	103		80.0-120		09/26/2020 18:46	WG1549772	6
(S) 4-Bromofluorobenzene	96.4		77.0-126		09/26/2020 18:46	WG1549772	
(S) 1,2-Dichloroethane-d4	119		70.0-130		09/26/2020 18:46	<u>WG1549772</u>	7

SDG: L1264151

: 51

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1264151-01,02,03,04,05

Cn

Sr

Qc

Gl

Â

Sc

Method Blank (MB)

Method Blank					1 Cp
(MB) R3575036-1	09/27/20 03:40				Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	%		%	%	Tc
Total Solids	0.000				
					³ Ss

L1264151-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1264151-04 09/27/2	DS) L1264151-04 09/27/20 03:40 • (DUP) R3575036-3 09/27/20 03:40										
	Original Result	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits					
Analyte	%	%		%		%					
Total Solids	82.8	82.5	1	0.343		10					

Laboratory Control Sample (LCS)

(LCS) R3575036-2 09	(LCS) R3575036-2 09/27/20 03:40									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	%	%	%	%						
Total Solids	50.0	50.0	99.9	85.0-115						

SDG: L1264151

DATE/TIME: 09/30/20 13:24

PAGE: 48 of 98

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1264151-06,07,08,09

⁺Cn

Sr

Qc

Gl

A

Sc

Method Blank (MB)

Method Blank	(MB)				1 c	Cn
(MB) R3575038-1	09/27/20 04:11					Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2	
Analyte	%		%	%	T	Тс
Total Solids	0.00100					
					³ S	Ss
						_

L1264151-08 Original Sample (OS) • Duplicate (DUP)

(OS) L1264151-08 09/27/2	OS) L1264151-08 09/27/20 04:11 • (DUP) R3575038-3 09/27/20 04:11								
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	%	%		%		%			
Total Solids	82.1	81.7	1	0.522		10			

Laboratory Control Sample (LCS)

(LCS) R3575038-2 09	9/27/20 04:11				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ACCOUNT: SCS Engineers - KS

PROJECT: C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24

PAGE: 49 of 98

Mercury by Method 7470A

QUALITY CONTROL SUMMARY

Тс

Ss

Ċn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3572881-1 09/2	1/20 19:59			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Mercury	U		0.100	0.200

Laboratory Control Sample (LCS)

(LCS) R3572881-2 09)/21/20 20:01				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Mercury	3.00	3.02	101	80.0-120	

L1264123-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1264123-01 09/21/20 21:19 • (MS) R3572881-5 09/21/20 21:21 • (MSD) R3572881-6 09/21/20 21:23												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%

ACCOUNT:
SCS Engineers - KS

PROJECT: C4-052-73682 SDG: L1264151 DATE/TIME: 09/30/20 13:24

PAGE: 50 of 98

Mercury by Method 7471B

QUALITY CONTROL SUMMARY L1264151-01,02,03,04,05,06,07,08,09

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3573588-1 09	9/23/20 12:37			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Mercury	U		0.0180	0.0400

Laboratory Control Sample (LCS)

(LCS) R3573588-2 09/2	LCS) R3573588-2 09/23/20 12:40								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
Mercury	0.500	0.498	99.7	80.0-120					

L1264151-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1264151-03 09/23/20	0 12:42 • (MS) F	3573588-3 0	9/23/20 12:45 •	(MSD) R35735	588-4 09/23/2	0 12:47						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Mercury	0.627	ND	0.617	0.584	93.4	88.1	1	75.0-125			5.51	20

DATE/TIME: 09/30/20 13:24

Metals (ICP) by Method 6010D

QUALITY CONTROL SUMMARY

(MB) R3575465-1 09/28/	20 18:14	
	MB Result	MB Qualifier
Amaluta		

Analyte	ug/l	ug/l	ug/l
Arsenic	U	4.40	10.0
Barium	U	0.895	5.00
Cadmium	U	0.563	2.00
Chromium	U	5.00	10.0
Lead	U	2.95	6.00
Selenium	U	7.35	10.0
Silver	U	1.91	5.00

Laboratory Control Sample (LCS)

(LCS) R3575465-2 09/28/	/20 18:17				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Arsenic	1000	961	96.1	80.0-120	
Barium	1000	983	98.3	80.0-120	
Cadmium	1000	959	95.9	80.0-120	
Chromium	1000	977	97.7	80.0-120	
Lead	1000	966	96.6	80.0-120	
Selenium	1000	959	95.9	80.0-120	
Silver	200	182	91.1	80.0-120	

L1264242-15 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

MB MDL

MB RDL

(OS) L1264242-15 09/28/20 18:20 • (MS) R3575465-4 09/28/20 18:25 • (MSD) R3575465-5 09/28/20 18:28												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Arsenic	1000	15.5	1030	1020	102	101	1	75.0-125			1.10	20
Barium	1000	34.8	1000	1010	97.0	97.2	1	75.0-125			0.239	20
Cadmium	1000	ND	992	992	99.2	99.2	1	75.0-125			0.0198	20
Chromium	1000	ND	950	958	94.9	95.6	1	75.0-125			0.785	20
Lead	1000	ND	982	971	97.8	96.7	1	75.0-125			1.14	20
Selenium	1000	ND	1020	1010	102	101	1	75.0-125			0.896	20
Silver	200	ND	190	188	94.8	94.2	1	75.0-125			0.581	20

ACCOUNT:
SCS Engineers - KS

PROJECT: C4-052-73682 SDG: L1264151 DATE/TIME: 09/30/20 13:24

PAGE: 52 of 98

ONE LAB. NATIONWIDE.

²Tc ³Ss

Cn

[°]Sr

GI

°AI

Sc

Metals (ICP) by Method 6010D

QUALITY CONTROL SUMMARY L1264151-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3574267-1	09/24/20 12:13

(=)=				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Arsenic	U		0.460	2.00
Barium	U		0.240	0.500
Cadmium	U		0.0810	0.500
Chromium	U		0.250	1.00
Lead	U		0.208	0.500
Selenium	U		0.617	2.00
Silver	U		0.228	1.00

Laboratory Control Sample (LCS)

(LCS) R3574267-2 09/	CS) R3574267-2 09/24/20 12:15								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
Arsenic	100	95.0	95.0	80.0-120					
Barium	100	99.2	99.2	80.0-120					
Cadmium	100	95.9	95.9	80.0-120					
Chromium	100	98.7	98.7	80.0-120					
Lead	100	97.4	97.4	80.0-120					
Selenium	100	97.4	97.4	80.0-120					
Silver	20.0	17.8	88.9	80.0-120					

L1264134-19 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Arsenic	111	9.62	113	111	92.8	90.8	1	75.0-125			1.93	20
Barium	111	3.92	113	108	98.2	94.1	1	75.0-125			4.19	20
Cadmium	111	ND	106	100	95.3	90.4	1	75.0-125			5.27	20
Chromium	111	10.3	119	117	98.1	96.1	1	75.0-125			1.89	20
Lead	111	5.34	114	111	97.9	94.8	1	75.0-125			3.09	20
Selenium	111	ND	107	102	96.4	91.7	1	75.0-125			5.04	20
Silver	22.2	ND	19.5	18.7	87.7	84.0	1	75.0-125			4.33	20

PROJECT: C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Volatile Petroleum Hydrocarbons by Method KS LRH

QUALITY CONTROL SUMMARY L1264151-10,11

ONE LAB. NATIONWIDE.

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

Method Blank (ME	5)				1 CD
(MB) R3575799-3 09/22	2/20 20:35				Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	Tc
LRH (C5-C8)	U		41.0	100	
(S) 2,5-Dibromotoluene(FIL) 83.7			70.0-130	³ Ss

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3575799-1 09/22/2	20 16:02 • (LCS	D) R3575799-	2 09/22/20 16	:35						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
LRH (C5-C8)	1200	952	955	79.3	79.6	70.0-130			0.315	25
(S) 2,5-Dibromotoluene(FID)				95.6	95.4	70.0-130				

DATE/TIME: 09/30/20 13:24

PAGE: 54 of 98

Volatile Petroleum Hydrocarbons by Method KS LRH

QUALITY CONTROL SUMMARY L1264151-01,02,03,04,05,06,07,08,09

ONE LAB. NATIONWIDE.

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

Method Blank (M) (C				
(MB) R3574216-3 09/23	3/20 22:58				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
LRH (C5-C8)	U		2.55	5.00	
(S) 2,5-Dibromotoluene(Fl	D) 89.6			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3574216-1 09/23/2	0 20:45 • (LCS	D) R3574216-	2 09/23/20 21:	18						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
LRH (C5-C8)	60.0	63.2	55.0	105	91.7	70.0-130			13.9	25
(S) 2,5-Dibromotoluene(FID)				99.2	101	70.0-130				

DATE/TIME: 09/30/20 13:24

PAGE: 55 of 98 Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY

L1264151-01,02,03,04,05,06,07,08,09

Method Blank (MB)								¹ Cp
(MB) R3575493-3 09/28/								Οp
	MB Result	MB Qualifier	MB MDL	MB RDL				2
Analyte	mg/kg		mg/kg	mg/kg				Tc
Acetone	U		0.0365	0.0500				
Acrylonitrile	U		0.00361	0.0125				³ Ss
Benzene	U		0.000467	0.00100				
Bromobenzene	U		0.000900	0.0125				4
Bromodichloromethane	U		0.000725	0.00250				[≁] Cn
Bromoform	U		0.00117	0.0250				
Bromomethane	U		0.00197	0.0125				⁵ Sr
n-Butylbenzene	U		0.00525	0.0125				
sec-Butylbenzene	U		0.00288	0.0125				⁶
tert-Butylbenzene	U		0.00195	0.00500				ଁQc
Carbon tetrachloride	U		0.000898	0.00500				
Chlorobenzene	U		0.000210	0.00250				GI
Chlorodibromomethane	U		0.000612	0.00250				
Chloroethane	U		0.00170	0.00500				8
Chloroform	U		0.00103	0.00250				٦A
Chloromethane	U		0.00435	0.0125				
2-Chlorotoluene	U		0.000865	0.00250				Sc
4-Chlorotoluene	U		0.000450	0.00500				
1,2-Dibromo-3-Chloropropane	U		0.00390	0.0250				
1,2-Dibromoethane	U		0.000648	0.00250				
Dibromomethane	U		0.000750	0.00500				
1,2-Dichlorobenzene	U		0.000425	0.00500				
1,3-Dichlorobenzene	U		0.000600	0.00500				
1,4-Dichlorobenzene	0.000950	J	0.000700	0.00500				
Dichlorodifluoromethane	U		0.00161	0.00250				
1,1-Dichloroethane	U		0.000491	0.00250				
1,2-Dichloroethane	U		0.000649	0.00250				
1,1-Dichloroethene	U		0.000606	0.00250				
cis-1,2-Dichloroethene	U		0.000734	0.00250				
trans-1,2-Dichloroethene	U		0.00104	0.00500				
1,2-Dichloropropane	U		0.00142	0.00500				
1,1-Dichloropropene	U		0.000809	0.00250				
1,3-Dichloropropane	U		0.000501	0.00500				
cis-1,3-Dichloropropene	U		0.000757	0.00250				
trans-1,3-Dichloropropene	U		0.00114	0.00500				
2,2-Dichloropropane	U		0.00138	0.00250				
Di-isopropyl ether	U		0.000410	0.00100				
Ethylbenzene	U		0.000737	0.00250				
Hexachloro-1,3-butadiene	U		0.00600	0.0250				
Isopropylbenzene	U		0.000425	0.00250				
A	CCOUNT:			PROJECT:	SDG:	DATE/TIME:	PAGE:	
SCS E	ngineers - KS			C4-052-73682	L1264151	09/30/20 13:24	56 of 98	

QUALITY CONTROL SUMMARY

L1264151-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3575493-3 09/28/2				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
p-lsopropyltoluene	U		0.00255	0.00500
2-Butanone (MEK)	0.0882	J	0.0635	0.100
Methylene Chloride	U		0.00664	0.0250
4-Methyl-2-pentanone (MIBK)	U		0.00228	0.0250
Methyl tert-butyl ether	U		0.000350	0.00100
Naphthalene	U		0.00488	0.0125
n-Propylbenzene	U		0.000950	0.00500
Styrene	U		0.000229	0.0125
1,1,1,2-Tetrachloroethane	U		0.000948	0.00250
1,1,2,2-Tetrachloroethane	U		0.000695	0.00250
Tetrachloroethene	U		0.000896	0.00250
Toluene	U		0.00130	0.00500
1,1,2-Trichlorotrifluoroethane	U		0.000754	0.00250
1,2,3-Trichlorobenzene	U		0.00733	0.0125
1,2,4-Trichlorobenzene	U		0.00440	0.0125
1,1,1-Trichloroethane	U		0.000923	0.00250
1,1,2-Trichloroethane	U		0.000597	0.00250
Trichloroethene	U		0.000584	0.00100
Trichlorofluoromethane	U		0.000827	0.00250
1,2,3-Trichloropropane	U		0.00162	0.0125
1,2,3-Trimethylbenzene	U		0.00158	0.00500
1,2,4-Trimethylbenzene	U		0.00158	0.00500
1,3,5-Trimethylbenzene	U		0.00200	0.00500
Vinyl chloride	U		0.00116	0.00250
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	96.8			75.0-131
(S) 4-Bromofluorobenzene	97.1			67.0-138
(S) 1,2-Dichloroethane-d4	91.5			70.0-130

C4-052-73682

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

SCS Engineers - KS

(LCS) R3575493-1 09/2	.CS) R3575493-1 09/28/20 19:22 • (LCSD) R3575493-2 09/28/20 19:40											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		
Acetone	0.625	0.440	0.355	70.4	56.8	10.0-160			21.4	31		
Acrylonitrile	0.625	0.519	0.475	83.0	76.0	45.0-153			8.85	22		
Benzene	0.125	0.116	0.122	92.8	97.6	70.0-123			5.04	20		
Bromobenzene	0.125	0.128	0.118	102	94.4	73.0-121			8.13	20		
Bromodichloromethane	0.125	0.119	0.124	95.2	99.2	73.0-121			4.12	20		
	ACCOUNT:			PR	OJECT:		SDG:			DATE/TIME:	F	PAGE:

L1264151

Ср

Тс

Ss

Cn

Sr

ິQc

GI

ΆI

Sc

PAGE: 57 of 98

09/30/20 13:24

QUALITY CONTROL SUMMARY L1264151-01,02,03,04,05,06,07,08,09

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

Spike Amount	LCJ RESUL	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD		
mallia	malka	mg/kg	%	%	%			%	RPD Limits %	
mg/kg	mg/kg									
0.125	0.124	0.129	99.2	103	75.0-124			3.95	20	
0.125	0.131	0.126	105	101	75.0-124			3.89	20	
0.125	0.135	0.134	108	107	59.0-130			0.743	20	
0.125	0.128	0.114	102	91.2	74.0-128			11.6	20	
0.125	0.147	0.134	118	107	75.0-122			9.25	20	
0.125	0.124	0.128	99.2	102	76.0-124			3.17	20	
0.125	0.126	0.126	101	101	76.0-125			0.000	20	
0.125	0.111	0.107	88.8	85.6	77.0-121			3.67	20	
0.125	0.144	0.126	115	101	43.0-156			13.3	20	
0.125	0.140	0.135	112	108	70.0-127			3.64	20	
0.125	0.132	0.133	106	106	65.0-131			0.755	20	
0.125	0.131	0.124	105	99.2	65.0-131			5.49	20	
0.125	0.128	0.124	102	99.2	73.0-125			3.17	20	
0.125	0.122	0.120	97.6	96.0	71.0-125			1.65	20	
0.125	0.117	0.127	93.6	102	74.0-125			8.20	20	
0.125	0.118	0.115	94.4	92.0	73.0-125			2.58	20	
0.125	0.110	0.100	88.0	80.0	80.0-125			9.52	20	
0.125	0.118	0.115	94.4	92.0	76.0-127			2.58	20	
0.125	0.119	0.111	95.2	88.8	73.0-127			6.96	20	
0.125	0.117	0.135	93.6	108	59.0-135			14.3	20	
0.125	0.129	0.139	103	111	60.0-136			7.46	20	
0.125	0.126	0.130	101	104	74.0-126			3.12	20	
0.125	0.115	0.116	92.0	92.8				0.866	20	
0.125	0.122	0.127	97.6	102	66.0-132			4.02	20	
ACCOUNT:			PR	OJECT:		SDG:			DATE/TIME:	PAG
	0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.	0.125 0.113 0.125 0.121 0.125 0.120 0.125 0.135 0.125 0.135 0.125 0.135 0.125 0.135 0.125 0.136 0.125 0.136 0.125 0.136 0.125 0.136 0.125 0.136 0.125 0.136 0.125 0.128 0.125 0.121 0.125 0.121 0.125 0.121 0.125 0.121 0.125 0.121 0.125 0.121 0.125 0.147 0.125 0.141 0.125 0.142 0.125 0.144 0.125 0.131 0.125 0.131 0.125 0.131 0.125 0.131 0.125 0.131 0.125 0.131 0.125 0.131 0.125 <td>0.125 0.113 0.116 0.125 0.120 0.115 0.125 0.115 0.114 0.125 0.115 0.114 0.125 0.135 0.129 0.125 0.135 0.129 0.125 0.136 0.110 0.125 0.136 0.135 0.125 0.136 0.135 0.125 0.136 0.135 0.125 0.128 0.132 0.125 0.128 0.132 0.125 0.128 0.132 0.125 0.131 0.126 0.125 0.131 0.126 0.125 0.132 0.134 0.125 0.147 0.134 0.125 0.147 0.134 0.125 0.144 0.126 0.125 0.144 0.126 0.125 0.144 0.126 0.125 0.131 0.124 0.125 0.132 0.133 0.125 0.117 0.127 0.125 0.118 0.114</td> <td>0.125 0.113 0.116 90.4 0.125 0.121 0.125 96.8 0.125 0.120 0.115 96.0 0.125 0.135 0.129 108 0.125 0.135 0.129 108 0.125 0.135 0.129 108 0.125 0.136 0.111 94.4 0.125 0.126 0.110 101 0.125 0.139 0.118 111 0.125 0.136 0.135 109 0.125 0.128 0.132 102 0.125 0.128 0.134 108 0.125 0.135 0.134 108 0.125 0.128 0.114 102 0.125 0.126 0.126 101 0.125 0.126 0.126 101 0.125 0.126 0.126 101 0.125 0.131 0.124 102 0.125 0.132 0.133</td> <td>0.125 0.113 0.116 90.4 92.8 0.125 0.121 0.125 96.8 100 0.125 0.120 0.115 96.0 92.0 0.125 0.115 0.114 92.0 91.2 0.125 0.135 0.129 108 103 0.125 0.135 0.129 108 103 0.125 0.136 0.118 111 94.4 88.8 0.125 0.136 0.135 109 108 0.125 0.136 0.135 109 108 0.125 0.128 0.132 102 106 0.125 0.136 0.132 102 106 0.125 0.131 0.126 105 101 0.125 0.132 0.134 108 107 0.125 0.147 0.134 118 107 0.125 0.140 0.135 112 108 0.125 0.140 <</td> <td>0.125 0.113 0.116 90.4 92.8 56.0-147 0.125 0.121 0.125 96.8 100 68.0-135 0.125 0.120 0.115 96.0 92.0 74.0-130 0.125 0.115 0.114 92.0 91.2 75.0-127 0.125 0.118 0.111 94.4 88.8 76.0-128 0.125 0.136 0.110 101 88.0 74.0-127 0.125 0.136 0.135 109 108 72.0-123 0.125 0.136 0.135 109 108 72.0-123 0.125 0.136 0.132 102 106 51.0-138 0.125 0.124 0.129 99.2 103 75.0-124 0.125 0.135 0.134 108 107 59.0-130 0.125 0.147 0.134 118 107 75.0-122 0.125 0.147 0.134 118 107 75.0-122 <</td> <td>0.125 0.113 0.116 90.4 92.8 56.0-147 0.125 0.121 0.125 96.8 100 68.0-135 0.125 0.120 0.115 96.0 92.0 74.0-130 0.125 0.135 0.112 108 103 66.0-128 0.125 0.135 0.129 108 103 66.0-128 0.125 0.18 0.111 94.4 88.8 76.0-128 0.125 0.126 0.110 101 88.0 74.0-127 0.125 0.126 0.118 111 94.4 61.0-134 0.125 0.128 0.132 102 106 51.0-138 0.125 0.128 0.131 1026 105 101 75.0-124 0.125 0.128 0.114 102 91.2 74.0-128 0.125 0.144 0.126 101 101 76.0-124 0.125 0.144 0.126 110 176.0-125 111</td> <td>0.125 0.113 0.116 90.4 92.8 56.0-147 0.125 0.121 0.125 96.8 100 68.0-135 0.125 0.115 0.114 92.0 74.0-130 0.125 0.115 0.114 92.0 91.2 75.0-127 0.125 0.135 0.129 108 103 66.0-128 0.125 0.136 0.111 94.4 88.0 76.0-128 0.125 0.136 0.135 109 108 72.0-123 0.125 0.136 0.135 109 108 72.0-123 0.125 0.126 0.132 102 106 51.0-138 0.125 0.124 0.129 99.2 103 75.0-124 0.125 0.134 108 107 59.0-130 0.125 0.144 102 91.2 74.0-128 0.125 0.126 0.144 102 91.2 74.0-128 0.125 0.144 0.126 115 101 76.0-124 0.125 0.144 0.126<!--</td--><td>0.125 0.113 0.116 90.4 92.8 56.0.147 2.62 0.125 0.121 0.125 96.8 100 68.0.135 3.25 0.125 0.115 0.114 92.0 91.2 75.0.127 0.873 0.125 0.115 0.114 92.0 91.2 75.0.127 0.873 0.125 0.115 0.124 0.10 101 88.0 74.0.127 13.6 0.125 0.136 0.110 101 88.0 74.0.127 13.6 0.125 0.132 102 106 51.0.138 3.08 0.125 0.132 102 106 51.0.138 3.08 0.125 0.134 1026 105 101 75.0.124 3.95 0.125 0.134 102 91.2 74.0.128 116 107 0.125 0.144 0.128 99.2 102 76.0.124 3.7 0.125 0.134 108 107</td><td>0.125 0.113 0.116 90.4 92.8 96.0417 2.62 20 0.125 0.121 0.125 96.8 100 68.0135 32.5 20 0.125 0.120 0.115 96.0 92.0 74.0130 42.6 20 0.125 0.115 0.114 92.0 91.2 75.0127 0.873 20 0.125 0.118 0.111 94.4 88.8 76.0128 6.11 20 0.125 0.128 0.118 111 94.4 61.0134 16.3 20 0.125 0.128 0.138 111 94.4 61.0134 30.8 20 0.125 0.128 0.138 110 91.0 75.0124 3.95 20 0.125 0.124 0.129 92.2 103 75.0124 3.89 20 0.125 0.131 0.126 101 75.0124 3.89 20 0.125 0.134 108 107 75.0124 3.2 20 0.125 0.140 0.14</td></td>	0.125 0.113 0.116 0.125 0.120 0.115 0.125 0.115 0.114 0.125 0.115 0.114 0.125 0.135 0.129 0.125 0.135 0.129 0.125 0.136 0.110 0.125 0.136 0.135 0.125 0.136 0.135 0.125 0.136 0.135 0.125 0.128 0.132 0.125 0.128 0.132 0.125 0.128 0.132 0.125 0.131 0.126 0.125 0.131 0.126 0.125 0.132 0.134 0.125 0.147 0.134 0.125 0.147 0.134 0.125 0.144 0.126 0.125 0.144 0.126 0.125 0.144 0.126 0.125 0.131 0.124 0.125 0.132 0.133 0.125 0.117 0.127 0.125 0.118 0.114	0.125 0.113 0.116 90.4 0.125 0.121 0.125 96.8 0.125 0.120 0.115 96.0 0.125 0.135 0.129 108 0.125 0.135 0.129 108 0.125 0.135 0.129 108 0.125 0.136 0.111 94.4 0.125 0.126 0.110 101 0.125 0.139 0.118 111 0.125 0.136 0.135 109 0.125 0.128 0.132 102 0.125 0.128 0.134 108 0.125 0.135 0.134 108 0.125 0.128 0.114 102 0.125 0.126 0.126 101 0.125 0.126 0.126 101 0.125 0.126 0.126 101 0.125 0.131 0.124 102 0.125 0.132 0.133	0.125 0.113 0.116 90.4 92.8 0.125 0.121 0.125 96.8 100 0.125 0.120 0.115 96.0 92.0 0.125 0.115 0.114 92.0 91.2 0.125 0.135 0.129 108 103 0.125 0.135 0.129 108 103 0.125 0.136 0.118 111 94.4 88.8 0.125 0.136 0.135 109 108 0.125 0.136 0.135 109 108 0.125 0.128 0.132 102 106 0.125 0.136 0.132 102 106 0.125 0.131 0.126 105 101 0.125 0.132 0.134 108 107 0.125 0.147 0.134 118 107 0.125 0.140 0.135 112 108 0.125 0.140 <	0.125 0.113 0.116 90.4 92.8 56.0-147 0.125 0.121 0.125 96.8 100 68.0-135 0.125 0.120 0.115 96.0 92.0 74.0-130 0.125 0.115 0.114 92.0 91.2 75.0-127 0.125 0.118 0.111 94.4 88.8 76.0-128 0.125 0.136 0.110 101 88.0 74.0-127 0.125 0.136 0.135 109 108 72.0-123 0.125 0.136 0.135 109 108 72.0-123 0.125 0.136 0.132 102 106 51.0-138 0.125 0.124 0.129 99.2 103 75.0-124 0.125 0.135 0.134 108 107 59.0-130 0.125 0.147 0.134 118 107 75.0-122 0.125 0.147 0.134 118 107 75.0-122 <	0.125 0.113 0.116 90.4 92.8 56.0-147 0.125 0.121 0.125 96.8 100 68.0-135 0.125 0.120 0.115 96.0 92.0 74.0-130 0.125 0.135 0.112 108 103 66.0-128 0.125 0.135 0.129 108 103 66.0-128 0.125 0.18 0.111 94.4 88.8 76.0-128 0.125 0.126 0.110 101 88.0 74.0-127 0.125 0.126 0.118 111 94.4 61.0-134 0.125 0.128 0.132 102 106 51.0-138 0.125 0.128 0.131 1026 105 101 75.0-124 0.125 0.128 0.114 102 91.2 74.0-128 0.125 0.144 0.126 101 101 76.0-124 0.125 0.144 0.126 110 176.0-125 111	0.125 0.113 0.116 90.4 92.8 56.0-147 0.125 0.121 0.125 96.8 100 68.0-135 0.125 0.115 0.114 92.0 74.0-130 0.125 0.115 0.114 92.0 91.2 75.0-127 0.125 0.135 0.129 108 103 66.0-128 0.125 0.136 0.111 94.4 88.0 76.0-128 0.125 0.136 0.135 109 108 72.0-123 0.125 0.136 0.135 109 108 72.0-123 0.125 0.126 0.132 102 106 51.0-138 0.125 0.124 0.129 99.2 103 75.0-124 0.125 0.134 108 107 59.0-130 0.125 0.144 102 91.2 74.0-128 0.125 0.126 0.144 102 91.2 74.0-128 0.125 0.144 0.126 115 101 76.0-124 0.125 0.144 0.126 </td <td>0.125 0.113 0.116 90.4 92.8 56.0.147 2.62 0.125 0.121 0.125 96.8 100 68.0.135 3.25 0.125 0.115 0.114 92.0 91.2 75.0.127 0.873 0.125 0.115 0.114 92.0 91.2 75.0.127 0.873 0.125 0.115 0.124 0.10 101 88.0 74.0.127 13.6 0.125 0.136 0.110 101 88.0 74.0.127 13.6 0.125 0.132 102 106 51.0.138 3.08 0.125 0.132 102 106 51.0.138 3.08 0.125 0.134 1026 105 101 75.0.124 3.95 0.125 0.134 102 91.2 74.0.128 116 107 0.125 0.144 0.128 99.2 102 76.0.124 3.7 0.125 0.134 108 107</td> <td>0.125 0.113 0.116 90.4 92.8 96.0417 2.62 20 0.125 0.121 0.125 96.8 100 68.0135 32.5 20 0.125 0.120 0.115 96.0 92.0 74.0130 42.6 20 0.125 0.115 0.114 92.0 91.2 75.0127 0.873 20 0.125 0.118 0.111 94.4 88.8 76.0128 6.11 20 0.125 0.128 0.118 111 94.4 61.0134 16.3 20 0.125 0.128 0.138 111 94.4 61.0134 30.8 20 0.125 0.128 0.138 110 91.0 75.0124 3.95 20 0.125 0.124 0.129 92.2 103 75.0124 3.89 20 0.125 0.131 0.126 101 75.0124 3.89 20 0.125 0.134 108 107 75.0124 3.2 20 0.125 0.140 0.14</td>	0.125 0.113 0.116 90.4 92.8 56.0.147 2.62 0.125 0.121 0.125 96.8 100 68.0.135 3.25 0.125 0.115 0.114 92.0 91.2 75.0.127 0.873 0.125 0.115 0.114 92.0 91.2 75.0.127 0.873 0.125 0.115 0.124 0.10 101 88.0 74.0.127 13.6 0.125 0.136 0.110 101 88.0 74.0.127 13.6 0.125 0.132 102 106 51.0.138 3.08 0.125 0.132 102 106 51.0.138 3.08 0.125 0.134 1026 105 101 75.0.124 3.95 0.125 0.134 102 91.2 74.0.128 116 107 0.125 0.144 0.128 99.2 102 76.0.124 3.7 0.125 0.134 108 107	0.125 0.113 0.116 90.4 92.8 96.0417 2.62 20 0.125 0.121 0.125 96.8 100 68.0135 32.5 20 0.125 0.120 0.115 96.0 92.0 74.0130 42.6 20 0.125 0.115 0.114 92.0 91.2 75.0127 0.873 20 0.125 0.118 0.111 94.4 88.8 76.0128 6.11 20 0.125 0.128 0.118 111 94.4 61.0134 16.3 20 0.125 0.128 0.138 111 94.4 61.0134 30.8 20 0.125 0.128 0.138 110 91.0 75.0124 3.95 20 0.125 0.124 0.129 92.2 103 75.0124 3.89 20 0.125 0.131 0.126 101 75.0124 3.89 20 0.125 0.134 108 107 75.0124 3.2 20 0.125 0.140 0.14

SCS Engineers - KS

C4-052-73682

L1264151

09/30/20 13:24

PAGE: 58 of 98

QUALITY CONTROL SUMMARY <u>L1264151-01,02,03,04,05,06,07,08,09</u>

ONE LAB. NATIONWIDE.

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3575493-1 09/28/											L
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier		RPD Limits	Ē
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	_
Naphthalene	0.125	0.113	0.127	90.4	102	59.0-130			11.7	20	
n-Propylbenzene	0.125	0.121	0.118	96.8	94.4	74.0-126			2.51	20	
Styrene	0.125	0.126	0.123	101	98.4	72.0-127			2.41	20	
1,1,1,2-Tetrachloroethane	0.125	0.142	0.124	114	99.2	74.0-129			13.5	20	ſ
1,1,2,2-Tetrachloroethane	0.125	0.136	0.129	109	103	68.0-128			5.28	20	
Tetrachloroethene	0.125	0.126	0.128	101	102	70.0-136			1.57	20	Ľ
Toluene	0.125	0.127	0.120	102	96.0	75.0-121			5.67	20	
1,1,2-Trichlorotrifluoroethane	0.125	0.111	0.107	88.8	85.6	61.0-139			3.67	20	
1,2,3-Trichlorobenzene	0.125	0.0989	0.106	79.1	84.8	59.0-139			6.93	20	
1,2,4-Trichlorobenzene	0.125	0.103	0.111	82.4	88.8	62.0-137			7.48	20	
1,1,1-Trichloroethane	0.125	0.109	0.118	87.2	94.4	69.0-126			7.93	20	
1,1,2-Trichloroethane	0.125	0.125	0.128	100	102	78.0-123			2.37	20	
Trichloroethene	0.125	0.121	0.112	96.8	89.6	76.0-126			7.73	20	
Trichlorofluoromethane	0.125	0.122	0.113	97.6	90.4	61.0-142			7.66	20	
1,2,3-Trichloropropane	0.125	0.117	0.121	93.6	96.8	67.0-129			3.36	20	
1,2,3-Trimethylbenzene	0.125	0.124	0.119	99.2	95.2	74.0-124			4.12	20	
1,2,4-Trimethylbenzene	0.125	0.119	0.119	95.2	95.2	70.0-126			0.000	20	
1,3,5-Trimethylbenzene	0.125	0.127	0.121	102	96.8	73.0-127			4.84	20	
Vinyl chloride	0.125	0.133	0.138	106	110	63.0-134			3.69	20	
Xylenes, Total	0.375	0.363	0.355	96.8	94.7	72.0-127			2.23	20	
(S) Toluene-d8				102	97.8	75.0-131					
(S) 4-Bromofluorobenzene				106	105	67.0-138					
(S) 1,2-Dichloroethane-d4				99.9	100	70.0-130					

SDG: L1264151 DATE/TIME: 09/30/20 13:24

PAGE: 59 of 98

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

					1
(MB) R3575729-3 09/29/2	20 10:08				
	MB Result	MB Qualifier	MB MDL	MB RDL	5
Analyte	mg/kg		mg/kg	mg/kg	
2-Butanone (MEK)	U		0.0635	0.100	
(S) Toluene-d8	99.9			75.0-131	3
(S) 4-Bromofluorobenzene	109			67.0-138	
(S) 1,2-Dichloroethane-d4	100			70.0-130	F

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3575729-1 09/29/	CS) R3575729-1 09/29/20 08:52 • (LCSD) R3575729-2 09/29/20 09:11										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
2-Butanone (MEK)	0.625	0.617	0.607	98.7	97.1	30.0-160			1.63	24	
(S) Toluene-d8				97.2	98.2	75.0-131					
(S) 4-Bromofluorobenzene				107	105	67.0-138					
(S) 1,2-Dichloroethane-d4				101	106	70.0-130					

DATE/TIME: 09/30/20 13:24

PAGE: 60 of 98

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3575391-3 09/26/2	0 17:29					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	ug/l		ug/l	ug/l		
Acetone	U		11.3	50.0		
Acrolein	U		2.54	50.0		
Acrylonitrile	U		0.671	10.0		
Benzene	U		0.0941	1.00		
Bromobenzene	U		0.118	1.00		
Bromodichloromethane	U		0.136	1.00		
Bromoform	U		0.129	1.00		
Bromomethane	U		0.605	5.00		
n-Butylbenzene	U		0.157	1.00		
sec-Butylbenzene	U		0.125	1.00		
ert-Butylbenzene	U		0.127	1.00		
Carbon tetrachloride	U		0.128	1.00		
Chlorobenzene	U		0.116	1.00		
Chlorodibromomethane	U		0.140	1.00		
Chloroethane	U		0.192	5.00		
Chloroform	U		0.111	5.00		
Chloromethane	U		0.960	2.50		
2-Chlorotoluene	U		0.106	1.00		
1-Chlorotoluene	U		0.114	1.00		
,2-Dibromo-3-Chloropropane	U		0.276	5.00		
,2-Dibromoethane	U		0.126	1.00		
Dibromomethane	U		0.122	1.00		
,2-Dichlorobenzene	U		0.107	1.00		
,3-Dichlorobenzene	U		0.110	1.00		
,4-Dichlorobenzene	U		0.120	1.00		
Dichlorodifluoromethane	U		0.374	5.00		
,1-Dichloroethane	U		0.100	1.00		
I,2-Dichloroethane	U		0.0819	1.00		
I,1-Dichloroethene	U		0.188	1.00		
cis-1,2-Dichloroethene	U		0.126	1.00		
trans-1,2-Dichloroethene	U		0.149	1.00		
I,2-Dichloropropane	U		0.149	1.00		
I,1-Dichloropropene	U		0.142	1.00		
I,3-Dichloropropane	U		0.110	1.00		
cis-1,3-Dichloropropene	U		0.111	1.00		
rans-1,3-Dichloropropene	U		0.118	1.00		
2,2-Dichloropropane	U		0.161	1.00		
Di-isopropyl ether	U		0.105	1.00		
Ethylbenzene	U		0.137	1.00		
Hexachloro-1,3-butadiene	U		0.337	1.00		

SCS Engineers - KS

C4-052-73682

SDG: L1264151 DATE/TIME: 09/30/20 13:24 PAGE: 61 of 98

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method Blank (MB)

(MB) R3575391-3 09/26/2	20 17:29				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	Tc
Isopropylbenzene	U		0.105	1.00	
p-Isopropyltoluene	U		0.120	1.00	³ Ss
2-Butanone (MEK)	U		1.19	10.0	0.0
Methylene Chloride	U		0.430	5.00	4
4-Methyl-2-pentanone (MIBK)	U		0.478	10.0	Cn
Methyl tert-butyl ether	U		0.101	1.00	
Naphthalene	U		1.00	5.00	⁵Sr
n-Propylbenzene	U		0.0993	1.00	
Styrene	U		0.118	1.00	6
1,1,1,2-Tetrachloroethane	U		0.147	1.00	ိQင
1,1,2,2-Tetrachloroethane	U		0.133	1.00	
Tetrachloroethene	U		0.300	1.00	⁷ Gl
Toluene	U		0.278	1.00	
1,1,2-Trichlorotrifluoroethane	U		0.180	1.00	8
1,2,3-Trichlorobenzene	U		0.230	1.00	A
1,2,4-Trichlorobenzene	U		0.481	1.00	
1,1,1-Trichloroethane	U		0.149	1.00	⁹ Sc
1,1,2-Trichloroethane	U		0.158	1.00	
Trichloroethene	U		0.190	1.00	
Trichlorofluoromethane	U		0.160	5.00	
1,2,3-Trichloropropane	U		0.237	2.50	
1,2,3-Trimethylbenzene	U		0.104	1.00	
1,2,4-Trimethylbenzene	U		0.322	1.00	
1,3,5-Trimethylbenzene	U		0.104	1.00	
Vinyl chloride	U		0.234	1.00	
Xylenes, Total	U		0.174	3.00	
(S) Toluene-d8	97.2			80.0-120	
(S) 4-Bromofluorobenzene	93.9			77.0-126	
(S) 1,2-Dichloroethane-d4	127			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3575391-2 09/26/20 16:50 • (LCSD) R3575391-6 09/27/20 01:12												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		
Acetone	25.0	27.5	28.8	110	115	19.0-160			4.62	27		
Acrolein	25.0	25.0	24.3	100	97.2	10.0-160			2.84	26		
Acrylonitrile	25.0	20.2	20.9	80.8	83.6	55.0-149			3.41	20		
Benzene	5.00	4.44	5.19	88.8	104	70.0-123			15.6	20		

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 SCS Engineers - KS
 C4-052-73682
 L1264151
 09/30/20 13:24
 62 of 98

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(ICC) D2575201 2	09/26/20 16:50 • (LCSD) R3575391-6 09/27/20 01:	12

	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Bromobenzene	5.00	4.52	5.52	90.4	110	73.0-121			19.9	20	
Bromodichloromethane	5.00	4.78	5.05	95.6	101	75.0-120			5.49	20	
Bromoform	5.00	4.83	5.00	96.6	100	68.0-132			3.46	20	
Bromomethane	5.00	4.50	5.72	90.0	114	10.0-160			23.9	25	
-Butylbenzene	5.00	4.43	4.85	88.6	97.0	73.0-125			9.05	20	
ec-Butylbenzene	5.00	4.95	5.65	99.0	113	75.0-125			13.2	20	
ert-Butylbenzene	5.00	4.76	5.49	95.2	110	76.0-124			14.2	20	
Carbon tetrachloride	5.00	4.74	5.04	94.8	101	68.0-126			6.13	20	
Chlorobenzene	5.00	4.76	5.15	95.2	103	80.0-121			7.87	20	
Chlorodibromomethane	5.00	5.06	5.17	101	103	77.0-125			2.15	20	
Chloroethane	5.00	5.32	6.08	106	122	47.0-150			13.3	20	
Chloroform	5.00	4.80	5.40	96.0	108	73.0-120			11.8	20	
Chloromethane	5.00	5.40	6.97	108	139	41.0-142		<u>J3</u>	25.4	20	
2-Chlorotoluene	5.00	4.37	5.65	87.4	113	76.0-123		<u>J3</u>	25.5	20	
-Chlorotoluene	5.00	4.32	5.55	86.4	111	75.0-122		J3	24.9	20	
,2-Dibromo-3-Chloropropane	5.00	4.08	4.64	81.6	92.8	58.0-134		_	12.8	20	
,2-Dibromoethane	5.00	4.64	5.03	92.8	101	80.0-122			8.07	20	
Dibromomethane	5.00	4.93	5.53	98.6	111	80.0-120			11.5	20	
,2-Dichlorobenzene	5.00	4.50	4.94	90.0	98.8	79.0-121			9.32	20	
,3-Dichlorobenzene	5.00	4.92	5.29	98.4	106	79.0-120			7.25	20	
,4-Dichlorobenzene	5.00	4.75	5.12	95.0	102	79.0-120			7.50	20	
Dichlorodifluoromethane	5.00	4.71	5.63	94.2	113	51.0-149			17.8	20	
,1-Dichloroethane	5.00	5.14	6.10	103	122	70.0-126			17.1	20	
,2-Dichloroethane	5.00	5.45	6.12	109	122	70.0-128			11.6	20	
,1-Dichloroethene	5.00	4.54	6.05	90.8	121	71.0-124		J3	28.5	20	
tis-1,2-Dichloroethene	5.00	4.48	5.55	89.6	111	73.0-120		<u>J3</u>	21.3	20	
rans-1,2-Dichloroethene	5.00	4.29	5.64	85.8	113	73.0-120		J3	27.2	20	
,2-Dichloropropane	5.00	4.83	5.71	96.6	114	77.0-125			16.7	20	
,1-Dichloropropene	5.00	4.54	5.07	90.8	101	74.0-126			11.0	20	
,3-Dichloropropane	5.00	4.48	5.14	89.6	103	80.0-120			13.7	20	
is-1,3-Dichloropropene	5.00	4.09	5.30	81.8	106	80.0-123		<u>J3</u>	25.8	20	
rans-1,3-Dichloropropene	5.00	4.80	5.13	96.0	103	78.0-124		_	6.65	20	
2,2-Dichloropropane	5.00	5.14	5.08	103	102	58.0-130			1.17	20	
Di-isopropyl ether	5.00	5.53	6.15	111	123	58.0-138			10.6	20	
Ethylbenzene	5.00	4.68	5.13	93.6	103	79.0-123			9.17	20	
Hexachloro-1,3-butadiene	5.00	6.17	5.29	123	106	54.0-138			15.4	20	
sopropylbenzene	5.00	4.47	5.03	89.4	101	76.0-127			11.8	20	
p-Isopropyltoluene	5.00	4.61	5.41	92.2	108	76.0-125			16.0	20	
P-Butanone (MEK)	25.0	26.6	25.5	106	102	44.0-160			4.22	20	
Aethylene Chloride	5.00	4.30	5.27	86.0	105	67.0-120		<u>J3</u>	20.3	20	
	5.00	1.00	0.27	00.0	100	07.0 120		<u> </u>	20.0	20	
A	CCOUNT:			PF	OJECT:		SDG:			DATE/TIME:	PAGE:
SCS E	ngineers - KS			C4-0	52-73682		L126415	51		09/30/20 13:24	63 of 98

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Ср

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3575391-2	09/26/20 16:50 • (LCSD) R3575391-6 09/27/20 01:12	

n-Propylbenzene5.004.235.5084.61077.0-124J326.120Styrene5.004.594.9191.898.273.0-1306.74201,1,2-Tetrachloroethane5.005.305.1710610375.0-1252.48201,1,2-Tetrachloroethane5.004.395.6987.811465.0-130J325.820Tetrachloroethane5.005.025.7910011672.0-13214.220Toluene5.004.305.1286.010279.0-12017.4201,1,2-Trichloroethane5.004.305.1286.010279.0-12017.4201,1,2-Trichloroethane5.004.305.9294.611869.0-132J322.3201,2,3-Trichlorobenzene5.004.204.6884.093.650.0-13810.8201,2,4-Trichlorobenzene5.004.314.3986.287.857.0-13718.4201,1,1-Trichloroethane5.004.775.6995.411473.0-12417.620	
Methyl ether5.004.415.0288.210068.0-12512.920Naphthalene5.005.653.9011378.054.0-135J336.620n-Propylbenzene5.004.235.5084.61077.0-124J326.120Styrene5.004.594.9191.898.273.0-1306.74201,1,2-Tetrachloroethane5.005.305.1710610375.0-1252.48201,1,2-Tetrachloroethane5.004.395.6987.811465.0130J325.820Tetrachloroethane5.005.025.791001672.0-13214.220Toluene5.004.305.1286.010279.0-12017.420Toluene5.004.735.9294.611869.0-132J325.8201,2,3-Trichloroethane5.004.204.6884.093.650.0-13810.8201,2,3-Trichloroethane5.004.314.3986.287.857.0-137184201,2,4-Trichloroethane5.004.314.3986.287.857.0-137184201,1,1-Trichloroethane5.004.775.6995.41473.0-12417.617.620	
Naphtalene5.005.653.9011378.054.0-135J.336.620n-Propylbenzene5.004.235.5084.61077.0-124J.326.120Styrene5.004.594.9191.898.273.0-1306.74201,1,2-Tetrachloroethane5.005.305.1710610375.0-1252.48201,1,2-Tetrachloroethane5.004.395.6987.811465.0-130J.325.820Tetrachloroethane5.005.025.791001672.0-13214.220Toluene5.004.305.1286.010279.0-12017.420Toluene5.004.305.9294.611869.0-132J.322.3201,2-Trichloroethane5.004.204.6884.093.650.0-13810.8201,2-Trichloroethane5.004.314.3986.287.857.0-1371.84201,2-Trichloroethane5.004.314.3986.287.857.0-1371.84201,1,1-Trichloroethane5.004.775.6995.411473.0-1241.7617.620	
n-Propylbenzene5.004.235.5084.610077.0-124J326.120Styrene5.004.594.9191.898.273.0-1306.74201,1,2-Tetrachloroethane5.005.305.1710610375.0-1252.48201,1,2-Tetrachloroethane5.004.395.6987.811465.0-130J325.820Tetrachloroethane5.005.025.7910011672.0-13214.220Toluene5.004.305.1286.010279.0-12017.4201,1,2-Trichloroethane5.004.735.9294.611869.0-132J322.3201,2,3-Trichloroethane5.004.204.6884.093.650.0-13810.8201,2,4-Trichloroethane5.004.314.3986.287.857.0-1371.84201,1,1-Trichloroethane5.004.775.6995.411473.0-12417.620	
n-Propylbenzene5.004.235.5084.61077.0124J326.120Styrene5.004.594.9191.898.273.01306.74201,1,2-Tetrachloroethane5.005.305.1710610375.01252.48201,1,2-Tetrachloroethane5.004.395.6987.811465.0130J325.820Tetrachloroethane5.005.025.791001672.013214.220Toluene5.004.305.1286.010279.012017.4201,1,2-Trichloroethane5.004.735.9294.61869.0132J322.3201,2,3-Trichlorobenzene5.004.204.6884.093.650.01381818.4201,2,4-Trichlorobenzene5.004.314.3986.287.857.013718.4201,1,1-Trichloroethane5.004.735.9295.414.473.012418.4201,1,1-Trichloroethane5.004.735.9986.287.857.013718.4201,1,1-Trichloroethane5.004.735.9995.414.473.012417.618.4201,1,1-Trichloroethane5.004.775.6995.414.473.012417.617.620	
1,1,2-Tetrachloroethane5.005.305.1710610375.01252.48201,1,2,2-Tetrachloroethane5.004.395.6987.811465.0130J.325.820Tetrachloroethane5.005.025.7910011672.013214.220Toluene5.004.305.1286.010279.012017.4201,1,2-Trichloroethane5.004.735.9294.611869.0132J.322.3201,2,3-Trichlorobenzene5.004.204.6884.093.650.013810.8201,2,4-Trichloroethane5.004.314.3986.287.857.01371.84201,1,1-Trichloroethane5.004.775.6995.411473.012417.620	
1.1,2,2-Tetrachloroethane5.004.395.6987.811465.0-130J325.820Tetrachloroethane5.005.025.7910011672.0-13214.220Toluene5.004.305.1286.010279.0-12017.4201,1,2-Trichloroethane5.004.735.9294.611869.0-132J322.3201,2,3-Trichlorobenzene5.004.204.6884.093.650.0-13810.8201,2,4-Trichlorobenzene5.004.314.3986.287.857.0-1371.84201,1,1-Trichloroethane5.004.775.6995.411473.0-12417.620	
Tetrachloroethene5.005.025.7910011672.0-13214.220Toluene5.004.305.1286.010279.0-12017.4201,1,2-Trichloroethane5.004.735.9294.611869.0-132J322.3201,2,3-Trichlorobenzene5.004.204.6884.093.650.0-13810.8201,2,4-Trichlorobenzene5.004.314.3986.287.857.0-1371.84201,1,1-Trichloroethane5.004.775.6995.411473.0-12417.620	
Tetrachloroethene5.005.025.7910011672.0-13214.220Toluene5.004.305.1286.010279.0-12017.4201,1,2-Trichloroethane5.004.735.9294.61869.0-132J322.3201,2,3-Trichlorobenzene5.004.204.6884.093.650.0-13810.8201,2,4-Trichlorobenzene5.004.314.3986.287.857.0-1371.84201,1,1-Trichloroethane5.004.775.6995.41473.0-12417.620	
1,1,2-Trichlorotrifluoroethane5.004.735.9294.611869.0-132J.322.3201,2,3-Trichlorobenzene5.004.204.6884.093.650.0-13810.8201,2,4-Trichlorobenzene5.004.314.3986.287.857.0-1371.84201,1,1-Trichloroethane5.004.775.6995.411473.0-12417.620	
1,2,3-Trichlorobenzene5.004.204.6884.093.650.0-13810.8201,2,4-Trichlorobenzene5.004.314.3986.287.857.0-1371.84201,1,1-Trichloroethane5.004.775.6995.411473.0-12417.620	
1,2,4-Trichlorobenzene5.004.314.3986.287.857.0-1371.84201,1,1-Trichloroethane5.004.775.6995.411473.0-12417.620	
1,1,1-Trichloroethane 5.00 4.77 5.69 95.4 114 73.0-124 17.6 20	
1,1,2-Trichloroethane 5.00 4.64 5.22 92.8 104 80.0-120 11.8 20	
Trichloroethene 5.00 4.53 5.36 90.6 107 78.0-124 16.8 20	
Trichlorofluoromethane 5.00 5.03 5.09 101 102 59.0-147 1.19 20	
1,2,3-Trichloropropane 5.00 4.53 5.89 90.6 118 73.0-130 <u>J3</u> 26.1 20	
1,2,3-Trimethylbenzene 5.00 4.39 5.07 87.8 101 77.0-120 14.4 20	
1,2,4-Trimethylbenzene 5.00 4.83 5.45 96.6 109 76.0-121 12.1 20	
1,3,5-Trimethylbenzene 5.00 4.45 5.78 89.0 116 76.0-122 <u>J3</u> 26.0 20	
Vinyl chloride 5.00 5.16 6.68 103 134 67.0-131 J3 J4 25.7 20	
Xylenes, Total 15.0 13.9 15.4 92.7 103 79.0-123 10.2 20	
(S) Toluene-d8 101 102 80.0-120	
(S) 4-Bromofluorobenzene 99.2 96.8 77.0-126	
(S) 1,2-Dichloroethane-d4 120 113 70.0-130	

L1264254-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Acrolein	25.0	ND	ND	ND	152	187	1	10.0-160		<u>J5</u>	20.3	39
Acetone	25.0	ND	ND	ND	175	199	1	10.0-160	<u>J5</u>	<u>J5</u>	12.8	35
Acrylonitrile	25.0	ND	19.5	27.9	78.0	112	1	21.0-160		<u>J3</u>	35.4	32
Benzene	5.00	1.97	6.35	6.62	87.6	93.0	1	17.0-158			4.16	27
Bromobenzene	5.00	ND	6.57	6.78	131	136	1	30.0-149			3.15	28
Bromodichloromethane	5.00	ND	4.70	5.36	94.0	107	1	31.0-150			13.1	27
Bromoform	5.00	ND	4.22	4.52	84.4	90.4	1	29.0-150			6.86	29
Bromomethane	5.00	ND	ND	ND	86.8	94.4	1	10.0-160			8.39	38

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
SCS Engineers - KS	C4-052-73682	L1264151	09/30/20 13:24	64 of 98

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

L1264254-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

				1	1 - C		1				
(09	S) L1264254-04	09/26/20 23:16	• (MS) R	3575391-4	09/27/20	00:14 •	(MSD) R3	3575391-5	09/27/20 00:	34	

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
1-Butylbenzene	5.00	3.91	8.36	8.78	89.0	97.4	1	31.0-150			4.90	30	
sec-Butylbenzene	5.00	3.09	7.73	8.12	92.8	101	1	33.0-155			4.92	29	
ert-Butylbenzene	5.00	ND	5.04	5.10	96.5	97.7	1	34.0-153			1.18	28	
Carbon tetrachloride	5.00	ND	4.22	4.61	84.4	92.2	1	23.0-159			8.83	28	
Chlorobenzene	5.00	ND	4.39	4.71	87.8	94.2	1	33.0-152			7.03	27	
Chlorodibromomethane	5.00	ND	4.59	5.30	91.8	106	1	37.0-149			14.4	27	
Chloroethane	5.00	ND	5.21	5.04	104	101	1	10.0-160			3.32	30	
Chloroform	5.00	ND	5.46	5.66	109	113	1	29.0-154			3.60	28	
Chloromethane	5.00	ND	5.44	5.61	109	112	1	10.0-160			3.08	29	
-Chlorotoluene	5.00	ND	5.13	5.40	103	108	1	32.0-153			5.13	28	
-Chlorotoluene	5.00	ND	4.51	4.83	90.2	96.6	1	32.0-150			6.85	28	
,2-Dibromo-3-Chloropropane	5.00	ND	ND	ND	87.4	95.8	1	22.0-151			9.17	34	
,2-Dibromoethane	5.00	ND	4.85	5.56	97.0	111	1	34.0-147			13.6	27	
Dibromomethane	5.00	ND	5.07	5.49	101	110	1	30.0-151			7.95	27	
,2-Dichlorobenzene	5.00	ND	4.50	4.69	90.0	93.8	1	34.0-149			4.13	28	
,3-Dichlorobenzene	5.00	ND	4.46	4.73	89.2	94.6	1	36.0-146			5.88	27	
,4-Dichlorobenzene	5.00	ND	4.66	4.87	93.2	97.4	1	35.0-142			4.41	27	
ichlorodifluoromethane	5.00	ND	ND	ND	88.6	94.6	1	10.0-160			6.55	29	
1-Dichloroethane	5.00	ND	5.01	5.80	100	116	1	25.0-158			14.6	27	
2-Dichloroethane	5.00	ND	5.28	5.65	106	113	1	29.0-151			6.77	27	
1-Dichloroethene	5.00	ND	4.98	4.95	99.6	99.0	1	11.0-160			0.604	29	
is-1,2-Dichloroethene	5.00	ND	4.51	5.15	90.2	103	1	10.0-160			13.3	27	
rans-1,2-Dichloroethene	5.00	ND	4.53	4.80	90.6	96.0	1	17.0-153			5.79	27	
2-Dichloropropane	5.00	ND	4.90	5.57	98.0	111	1	30.0-156			12.8	27	
,1-Dichloropropene	5.00	ND	5.17	5.08	103	102	1	25.0-158			1.76	27	
,3-Dichloropropane	5.00	ND	4.71	5.32	94.2	106	1	38.0-147			12.2	27	
is-1,3-Dichloropropene	5.00	ND	4.03	4.82	80.6	96.4	1	34.0-149			17.9	28	
rans-1,3-Dichloropropene	5.00	ND	4.51	5.14	90.2	103	1	32.0-149			13.1	28	
,2-Dichloropropane	5.00	ND	4.50	4.95	90.0	99.0	1	24.0-152			9.52	29	
Di-isopropyl ether	5.00	ND	5.40	6.39	108	128	1	21.0-160			16.8	28	
thylbenzene	5.00	2.68	7.10	7.44	88.4	95.2	1	30.0-155			4.68	27	
lexachloro-1,3-butadiene	5.00	ND	5.76	5.90	115	118	1	20.0-155			2.40	34	
sopropylbenzene	5.00	5.27	9.43	9.80	83.2	90.6	1	28.0-157			3.85	27	
p-lsopropyltoluene	5.00	ND	7.81	5.57	139	93.8	1	30.0-154		<u>J3</u>	33.5	29	
P-Butanone (MEK)	25.0	ND	34.6	40.9	139	164	1	10.0-160			16.7	32	
fethylene Chloride	5.00	ND	ND	ND	87.4	95.6	1	23.0-144		<u>J5</u>	8.96	28	
-Methyl-2-pentanone (MIBK)	25.0	ND	24.2	33.2	96.8	133	1	29.0-144		13	31.4	28	
Aethyl tert-butyl ether	5.00	ND	4.75	5.18	96.8 95.0	104	1	29.0-160		<u>J3</u>	8.66	29	
laphthalene	5.00	ND	4.75 7.37	7.89	95.0 88.0	98.4	1	12.0-150			6.82	35	
•							1						
n-Propylbenzene	5.00	19.4	23.3	24.5	78.0	102		31.0-154			5.02	28	
٨٥	COUNT:			ppc	JECT:			SDG:		DATE/	TIME		PAGE
	ngineers - KS				2-73682			1264151		09/30/2			65 of 9

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

L1264254-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Styrene	5.00	ND	4.17	4.29	83.4	85.8	1	33.0-155			2.84	28
1,1,1,2-Tetrachloroethane	5.00	ND	4.52	5.10	90.4	102	1	36.0-151			12.1	29
1,1,2,2-Tetrachloroethane	5.00	ND	5.01	5.41	100	108	1	33.0-150			7.68	28
Tetrachloroethene	5.00	ND	4.69	5.09	93.8	102	1	10.0-160			8.18	27
Toluene	5.00	ND	4.59	5.00	91.8	100	1	26.0-154			8.55	28
1,1,2-Trichlorotrifluoroethane	5.00	ND	5.11	5.40	102	108	1	23.0-160			5.52	30
1,2,3-Trichlorobenzene	5.00	ND	4.37	4.97	87.4	99.4	1	17.0-150			12.8	36
1,2,4-Trichlorobenzene	5.00	ND	4.34	4.81	86.8	96.2	1	24.0-150			10.3	33
1,1,1-Trichloroethane	5.00	ND	4.68	5.24	93.6	105	1	23.0-160			11.3	28
1,1,2-Trichloroethane	5.00	ND	5.82	7.17	116	143	1	35.0-147			20.8	27
Trichloroethene	5.00	ND	4.34	4.85	86.8	97.0	1	10.0-160			11.1	25
Trichlorofluoromethane	5.00	ND	ND	ND	93.6	94.0	1	17.0-160			0.426	31
1,2,3-Trichloropropane	5.00	ND	5.13	5.53	103	111	1	34.0-151			7.50	29
1,2,3-Trimethylbenzene	5.00	1.88	6.37	6.58	89.8	94.0	1	32.0-149			3.24	28
1,2,4-Trimethylbenzene	5.00	28.0	32.9	33.9	98.0	118	1	26.0-154			2.99	27
1,3,5-Trimethylbenzene	5.00	6.40	11.1	11.3	94.0	98.0	1	28.0-153			1.79	27
Vinyl chloride	5.00	ND	5.28	5.55	106	111	1	10.0-160			4.99	27
Xylenes, Total	15.0	7.96	20.5	22.1	83.6	94.3	1	29.0-154			7.51	28
(S) Toluene-d8					107	110		80.0-120				
(S) 4-Bromofluorobenzene					95.4	89.6		77.0-126				
(S) 1,2-Dichloroethane-d4					113	111		70.0-130				

PROJECT: C4-052-73682 SDG: L1264151 DATE/TIME: 09/30/20 13:24

PAGE: 66 of 98

L1264151-10,11

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3573169-1 09/22/2	20 08:25			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
MRH (C9-C18)	U		7.54	100
HRH (C19-C35)	U		8.05	100
(S) 1-Chloro-octadecane	92.2			40.0-140

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3573169-2 09/22/20 08:47 • (LCSD) R3573169-3 09/22/20 09:10											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
MRH (C9-C18)	1200	1170	1160	97.5	96.7	40.0-140			0.858	25	
HRH (C19-C35)	1600	1330	1330	83.1	83.1	40.0-140			0.000	25	
(S) 1-Chloro-octadecane				96.4	96.8	40.0-140					

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1264151 DATE/TIME: 09/30/20 13:24

PAGE: 67 of 98

Semi-Volatile Organic Compounds (GC) by Method KS $\mathsf{MRH}/\mathsf{HRH}$

QUALITY CONTROL SUMMARY

L1264151-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3575219-1 09/27/2	20 17:49			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
MRH (C9-C18)	2.46	J	0.586	10.0
HRH (C19-C35)	2.73	J	0.691	10.0
(S) 1-Chloro-octadecane	80.2			40.0-140

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCS) R3575219-2 09/27/20 18:12 • (LCSD) R3575219-3 09/27/20 18:34											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
MRH (C9-C18)	40.0	35.3	34.7	88.3	86.8	40.0-140			1.71	25	
HRH (C19-C35)	53.4	53.1	48.0	99.4	89.9	40.0-140			10.1	25	
(S) 1-Chloro-octadecane				96.4	91.0	40.0-140					

L1263861-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1263861-02 09/27/2	(OS) L1263861-02 09/27/20 19:43 • (MS) R3575219-4 09/27/20 20:05 • (MSD) R3575219-5 09/27/20 20:28												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
MRH (C9-C18)	50.0	ND	41.9	37.6	83.8	74.4	1	40.0-140			10.9	50	
HRH (C19-C35)	66.8	ND	83.0	72.6	124	108	1	40.0-140			13.4	50	
(S) 1-Chloro-octadecane					92.1	88.6		40.0-140					

DATE/TIME: 09/30/20 13:24 Sr

[°]Qc

GI

A

Sc

Pesticides (GC) by Method 8081

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3574630-1 09/25/	20 14:53				
	MB Result	MB Qualifier	MB MDL	MB RDL	Ē
Analyte	ug/l		ug/l	ug/l	ŕ
Aldrin	U		0.0198	0.0500	
Alpha BHC	U		0.0172	0.0500	3
Beta BHC	U		0.0208	0.0500	L
Delta BHC	U		0.0150	0.0500	4
Gamma BHC	U		0.0209	0.0500	
4,4-DDD	U		0.0177	0.0500	
4,4-DDE	U		0.0154	0.0500	Ę
4,4-DDT	U		0.0198	0.0500	L
Dieldrin	U		0.0162	0.0500	6
Endosulfan I	U		0.0160	0.0500	
Endosulfan II	U		0.0164	0.0500	
Endosulfan sulfate	U		0.0217	0.0500	7
Endrin	U		0.0161	0.0500	L
Endrin aldehyde	U		0.0237	0.0500	8
Endrin ketone	U		0.0219	0.0500	
Heptachlor	U		0.0148	0.0500	1
Heptachlor epoxide	U		0.0183	0.0500	ę
Hexachlorobenzene	U		0.0176	0.0500	
Methoxychlor	U		0.0193	0.0500	
Chlordane	U		0.0198	5.00	
Toxaphene	U		0.168	0.500	
(S) Decachlorobiphenyl	71.2			10.0-128	
(S) Tetrachloro-m-xylene	56.6			10.0-127	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3574630-2 09/25/20 18:12 • (LCSD) R3574630-3 09/25/20 18:25										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Aldrin	1.00	0.596	0.649	59.6	64.9	22.0-124			8.51	34
Alpha BHC	1.00	0.715	0.698	71.5	69.8	54.0-130			2.41	23
Beta BHC	1.00	0.838	0.836	83.8	83.6	53.0-136			0.239	20
Delta BHC	1.00	0.765	0.755	76.5	75.5	54.0-133			1.32	20
Gamma BHC	1.00	0.710	0.690	71.0	69.0	55.0-129			2.86	20
4,4-DDD	1.00	0.795	0.791	79.5	79.1	56.0-140			0.504	22
4,4-DDE	1.00	0.711	0.707	71.1	70.7	52.0-128			0.564	22
4,4-DDT	1.00	0.772	0.770	77.2	77.0	50.0-141			0.259	23
Dieldrin	1.00	0.795	0.739	79.5	73.9	59.0-133			7.30	20
Endosulfan I	1.00	0.824	0.793	82.4	79.3	57.0-131			3.83	20

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
SCS Engineers - KS	C4-052-73682	L1264151	09/30/20 13:24	69 of 98

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCS) R3574630-2 09/25/20 18:12 • (LCSD) R3574630-3 09/25/20 18:25											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Endosulfan II	1.00	0.821	0.815	82.1	81.5	58.0-133			0.734	20	
Endosulfan sulfate	1.00	0.852	0.880	85.2	88.0	58.0-133			3.23	21	
Endrin	1.00	0.852	0.829	85.2	82.9	57.0-134			2.74	21	
Endrin aldehyde	1.00	0.822	0.827	82.2	82.7	53.0-129			0.606	20	
Endrin ketone	1.00	0.797	0.848	79.7	84.8	60.0-145			6.20	20	
Heptachlor	1.00	0.624	0.650	62.4	65.0	27.0-132			4.08	31	
Heptachlor epoxide	1.00	0.788	0.776	78.8	77.6	57.0-130			1.53	20	
Hexachlorobenzene	1.00	0.680	0.684	68.0	68.4	30.0-114			0.587	30	
Methoxychlor	1.00	0.937	1.07	93.7	107	54.0-155			13.3	24	
(S) Decachlorobiphenyl				80.2	86.9	10.0-128					
(S) Tetrachloro-m-xylene				60.9	59.0	10.0-127					

SDG: L1264151 DATE/TIME: 09/30/20 13:24

PAGE: 70 of 98 Pesticides (GC) by Method 8081

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3575170-1 09/28/20 08:30										
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/kg		mg/kg	mg/kg						
Aldrin	U		0.00376	0.0200						
Alpha BHC	U		0.00368	0.0200						
Beta BHC	U		0.00379	0.0200						
Delta BHC	U		0.00346	0.0200						
Gamma BHC	U		0.00344	0.0200						
4,4-DDD	U		0.00370	0.0200						
4,4-DDE	U		0.00366	0.0200						
4,4-DDT	U		0.00627	0.0200						
Dieldrin	U		0.00344	0.0200						
Endosulfan I	U		0.00363	0.0200						
Endosulfan II	U		0.00335	0.0200						
Endosulfan sulfate	U		0.00364	0.0200						
Endrin	U		0.00350	0.0200						
Endrin aldehyde	U		0.00339	0.0200						
Endrin ketone	U		0.00711	0.0200						
Heptachlor	U		0.00428	0.0200						
Heptachlor epoxide	U		0.00339	0.0200						
Hexachlorobenzene	U		0.00346	0.0200						
Methoxychlor	U		0.00484	0.0200						
Chlordane	U		0.103	0.300						
Toxaphene	U		0.124	0.400						
(S) Decachlorobiphenyl	71.5			10.0-135						
(S) Tetrachloro-m-xylene	73.4			10.0-139						

Laboratory Control Sample (LCS)

ACCOUNT:

SCS Engineers - KS

(LCS) R3575170-2 09/28/20 08:43									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
Aldrin	0.0666	0.0594	89.2	34.0-136					
Alpha BHC	0.0666	0.0556	83.5	34.0-139					
Beta BHC	0.0666	0.0624	93.7	34.0-133					
Delta BHC	0.0666	0.0574	86.2	34.0-135					
Gamma BHC	0.0666	0.0548	82.3	34.0-136					
4,4-DDD	0.0666	0.0542	81.4	33.0-141					
4,4-DDE	0.0666	0.0547	82.1	34.0-134					
4,4-DDT	0.0666	0.0551	82.7	30.0-143					
Dieldrin	0.0666	0.0609	91.4	35.0-137					
Endosulfan I	0.0666	0.0624	93.7	34.0-134					

SDG:

L1264151

DATE/TIME:

09/30/20 13:24

PROJECT:

C4-052-73682

¹Cp ²Tc ³Ss ⁴Cn

Sr

ິQc

GI

PAGE:

71 of 98

LCS Qualifier

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Laboratory Control Sample (LCS)

(LCS) R3575170-2 09/28/20 08:43

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	mg/kg	mg/kg	%	%
Endosulfan II	0.0666	0.0600	90.1	35.0-132
Endosulfan sulfate	0.0666	0.0577	86.6	35.0-132
Endrin	0.0666	0.0622	93.4	34.0-137
Endrin aldehyde	0.0666	0.0562	84.4	23.0-121
Endrin ketone	0.0666	0.0596	89.5	35.0-144
Heptachlor	0.0666	0.0568	85.3	36.0-141
Heptachlor epoxide	0.0666	0.0605	90.8	36.0-134
Hexachlorobenzene	0.0666	0.0590	88.6	33.0-129
Methoxychlor	0.0666	0.0591	88.7	28.0-150
(S) Decachlorobiphenyl			92.2	10.0-135
(S) Tetrachloro-m-xylene			92.5	10.0-139

L1263944-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1263944-05 09/28/20 09:45 • (MS) R3575170-3 09/28/20 09:57 • (MSD) R3575170-4 09/28/20 10:10												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Aldrin	0.0656	ND	0.0541	0.0530	82.5	80.8	1	20.0-135			2.05	37
Alpha BHC	0.0656	ND	0.0517	0.0503	78.8	76.7	1	27.0-140			2.75	35
Beta BHC	0.0656	ND	0.0573	0.0559	87.3	85.2	1	23.0-141			2.47	37
Delta BHC	0.0656	ND	0.0521	0.0510	79.4	77.7	1	21.0-138			2.13	35
Gamma BHC	0.0656	ND	0.0506	0.0494	77.1	75.3	1	27.0-137			2.40	36
4,4-DDD	0.0656	ND	0.0521	0.0514	79.4	78.4	1	15.0-152			1.35	39
4,4-DDE	0.0656	ND	0.0503	0.0496	76.7	75.6	1	10.0-152			1.40	40
4,4-DDT	0.0656	ND	0.0520	0.0512	79.3	78.0	1	10.0-151			1.55	40
Dieldrin	0.0656	ND	0.0561	0.0547	85.5	83.4	1	17.0-145			2.53	37
Endosulfan I	0.0656	ND	0.0567	0.0539	86.4	82.2	1	20.0-137			5.06	36
Endosulfan II	0.0656	ND	0.0542	0.0532	82.6	81.1	1	15.0-141			1.86	37
Endosulfan sulfate	0.0656	ND	0.0549	0.0535	83.7	81.6	1	15.0-143			2.58	38
Endrin	0.0656	ND	0.0591	0.0561	90.1	85.5	1	19.0-143			5.21	37
Endrin aldehyde	0.0656	ND	0.0528	0.0502	80.5	76.5	1	10.0-139			5.05	40
Endrin ketone	0.0656	ND	0.0550	0.0537	83.8	81.9	1	17.0-149			2.39	38
Heptachlor	0.0656	ND	0.0522	0.0503	79.6	76.7	1	22.0-138			3.71	37
Heptachlor epoxide	0.0656	ND	0.0555	0.0545	84.6	83.1	1	22.0-138			1.82	36
Hexachlorobenzene	0.0656	ND	0.0546	0.0530	83.2	80.8	1	25.0-126			2.97	35
Methoxychlor	0.0656	ND	0.0572	0.0560	87.2	85.4	1	10.0-159			2.12	40
(S) Decachlorobiphenyl					92.2	87.3		10.0-135				
(S) Tetrachloro-m-xylene					84.0	82.8		10.0-139				

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
SCS Engineers - KS	C4-052-73682	L1264151	09/30/20 13:24	72 of 98

Pesticides (GC) by Method 8081B

QUALITY CONTROL SUMMARY L1264151-01,02,04,06,08,09

Mothed Plank (MP)

Method Blank (MB	3)			
(MB) R3573910-1 09/24/2	20 01:54			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Aldrin	U		0.00376	0.0200
Alpha BHC	U		0.00368	0.0200
Beta BHC	U		0.00379	0.0200
Delta BHC	U		0.00346	0.0200
Gamma BHC	U		0.00344	0.0200
4,4-DDD	U		0.00370	0.0200
4,4-DDE	U		0.00366	0.0200
4,4-DDT	U		0.00627	0.0200
Dieldrin	U		0.00344	0.0200
Endosulfan I	U		0.00363	0.0200
Endosulfan II	U		0.00335	0.0200
Endosulfan sulfate	U		0.00364	0.0200
Endrin	U		0.00350	0.0200
Endrin aldehyde	U		0.00339	0.0200
Endrin ketone	U		0.00711	0.0200
Heptachlor	U		0.00428	0.0200
Heptachlor epoxide	U		0.00339	0.0200
Hexachlorobenzene	U		0.00346	0.0200
Methoxychlor	U		0.00484	0.0200
Chlordane	U		0.103	0.300
Toxaphene	U		0.124	0.400
(S) Decachlorobiphenyl	82.4			10.0-135
(S) Tetrachloro-m-xylene	79.3			10.0-139

Laboratory Control Sample (LCS)

(LCS) R3573910-2 09/24/20 02:21									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
Aldrin	0.0666	0.0566	85.0	34.0-136					
Alpha BHC	0.0666	0.0562	84.4	34.0-139					
Beta BHC	0.0666	0.0559	83.9	34.0-133					
Delta BHC	0.0666	0.0563	84.5	34.0-135					
Gamma BHC	0.0666	0.0567	85.1	34.0-136					
4,4-DDD	0.0666	0.0629	94.4	33.0-141					
4,4-DDE	0.0666	0.0571	85.7	34.0-134					
4,4-DDT	0.0666	0.0690	104	30.0-143					
Dieldrin	0.0666	0.0591	88.7	35.0-137					
Endosulfan I	0.0666	0.0564	84.7	34.0-134					

ACCOUNT:	
SCS Engineers - KS	

PROJECT: C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24

PAGE: 73 of 98 Ср

Тс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Pesticides (GC) by Method 8081B

QUALITY CONTROL SUMMARY

LCS Qualifier

Laboratory Control Sample (LCS)

(LCS) R3573910-2 09/24/20 02:21

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	mg/kg	mg/kg	%	%
Endosulfan II	0.0666	0.0563	84.5	35.0-132
Endosulfan sulfate	0.0666	0.0580	87.1	35.0-132
Endrin	0.0666	0.0612	91.9	34.0-137
Endrin aldehyde	0.0666	0.0538	80.8	23.0-121
Endrin ketone	0.0666	0.0604	90.7	35.0-144
Heptachlor	0.0666	0.0602	90.4	36.0-141
Heptachlor epoxide	0.0666	0.0571	85.7	36.0-134
Hexachlorobenzene	0.0666	0.0554	83.2	33.0-129
Methoxychlor	0.0666	0.0654	98.2	28.0-150
(S) Decachlorobiphenyl			85.6	10.0-135
(S) Tetrachloro-m-xylene			80.8	10.0-139

L1264151-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1264151-01 09/24/20 03:27 • (MS) R3573910-3 09/24/20 03:40 • (MSD) R3573910-4 09/24/20 03:53

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Aldrin	0.0811	ND	0.0439	0.0566	54.1	69.8	1	20.0-135			25.5	37
Alpha BHC	0.0811	ND	0.0469	0.0616	57.8	76.0	1	27.0-140			27.2	35
Beta BHC	0.0811	ND	0.0452	0.0585	55.7	72.1	1	23.0-141			25.6	37
Delta BHC	0.0811	ND	0.0474	0.0625	58.4	77.0	1	21.0-138			27.5	35
Gamma BHC	0.0811	ND	0.0480	0.0630	59.2	77.6	1	27.0-137			27.0	36
4,4-DDD	0.0811	ND	0.0486	0.0637	59.9	78.5	1	15.0-152			26.9	39
4,4-DDE	0.0811	ND	0.0435	0.0560	53.6	69.1	1	10.0-152			25.2	40
4,4-DDT	0.0811	ND	0.0518	0.0680	63.8	83.8	1	10.0-151			27.1	40
Dieldrin	0.0811	ND	0.0471	0.0616	58.1	76.0	1	17.0-145			26.7	37
Endosulfan I	0.0811	ND	0.0457	0.0594	56.3	73.3	1	20.0-137			26.2	36
Endosulfan II	0.0811	ND	0.0463	0.0607	57.1	74.8	1	15.0-141			26.9	37
Endosulfan sulfate	0.0811	ND	0.0485	0.0636	59.8	78.4	1	15.0-143			27.0	38
Endrin	0.0811	ND	0.0499	0.0653	61.6	80.5	1	19.0-143			26.6	37
Endrin aldehyde	0.0811	ND	0.0467	0.0616	57.5	76.0	1	10.0-139			27.7	40
Endrin ketone	0.0811	ND	0.0510	0.0665	62.9	82.0	1	17.0-149			26.3	38
Heptachlor	0.0811	ND	0.0480	0.0619	59.2	76.3	1	22.0-138			25.3	37
Heptachlor epoxide	0.0811	ND	0.0462	0.0601	56.9	74.0	1	22.0-138			26.1	36
Hexachlorobenzene	0.0811	ND	0.0452	0.0581	55.7	71.6	1	25.0-126			25.0	35
Methoxychlor	0.0811	ND	0.0502	0.0654	61.9	80.6	1	10.0-159			26.3	40
(S) Decachlorobiphenyl					55.0	66.7		10.0-135				
(S) Tetrachloro-m-xylene					53.5	67.7		10.0-139				

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 SCS Engineers - KS
 C4-052-73682
 L1264151
 09/30/20 13:24
 74 of 98

Ss

ΆI

[°]Qc

Polychlorinated Biphenyls (GC) by Method 8082

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

(S) Decachlorobiphenyl

(S) Tetrachloro-m-xylene

•				
(MB) R3574484-1 09/2	5/20 11:00			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
PCB 1260	U		0.173	0.500
PCB 1016	U		0.270	0.500
PCB 1221	U		0.270	0.500
PCB 1232	U		0.270	0.500
PCB 1242	U		0.270	0.500
PCB 1248	U		0.173	0.500
PCB 1254	U		0.173	0.500

78.2

61.6

Laboratory Control Sample (LCS)

(LCS) R3574484-2 09/2	5/20 11:13				L	-
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	8
Analyte	ug/l	ug/l	%	%		
PCB 1260	2.50	2.08	83.2	42.0-131		a
PCB 1016	2.50	2.02	80.8	36.0-135		ĺ
(S) Decachlorobiphenyl			84.0	10.0-128	L	-
(S) Tetrachloro-m-xylene			58.1	10.0-127		

L1264389-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

10.0-128

10.0-127

(OS) L1264389-01 09/25/2	(OS) L1264389-01 09/25/20 14:39 • (MS) R3574484-3 09/25/20 14:53 • (MSD) R3574484-4 09/25/20 15:06												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
PCB 1260	2.50	ND	2.34	2.48	93.6	99.2	1	20.0-142			5.81	27	
PCB 1016	2.50	ND	2.16	2.30	86.4	92.0	1	11.0-160			6.28	38	
(S) Decachlorobiphenyl					51.5	41.4		10.0-128					
(S) Tetrachloro-m-xylene					66.8	72.5		10.0-127					

PROJECT: C4-052-73682 SDG: L1264151 DATE/TIME: 09/30/20 13:24

PAGE: 75 of 98 Polychlorinated Biphenyls (GC) by Method 8082

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) R3575212-1 09/28/2	20 09:10				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
PCB 1016	U		0.0118	0.0340	
PCB 1221	U		0.0118	0.0340	
PCB 1232	U		0.0118	0.0340	
PCB 1242	U		0.0118	0.0340	
PCB 1248	U		0.00738	0.0170	
PCB 1254	U		0.00738	0.0170	
PCB 1260	U		0.00738	0.0170	
(S) Decachlorobiphenyl	70.0			10.0-135	
(S) Tetrachloro-m-xylene	74.5			10.0-139	

Laboratory Control Sample (LCS)

(LCS) R3575212-2 09/28	3/20 09:21					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	8
Analyte	mg/kg	mg/kg	%	%		
PCB 1260	0.167	0.145	86.8	37.0-145		9
PCB 1016	0.167	0.153	91.6	36.0-141		ľ
(S) Decachlorobiphenyl			82.4	10.0-135		L
(S) Tetrachloro-m-xylene			88.4	10.0-139		

L1263868-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1263868-08 09/28/	20 09:32 • (MS) R35/5212-3	09/28/20 09:4	2 • (MSD) R35.	/5212-4 09/28	/20 09:53						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg				%	%		%			%	%
PCB 1260	0.166	ND	0.170	0.146	101	85.6	1	10.0-160			15.5	38
PCB 1016	0.166	ND	0.193	0.177	114	104	1	10.0-160			8.84	37
(S) Decachlorobiphenyl					91.0	91.9		10.0-135				
(S) Tetrachloro-m-xylene					106	97.6		10.0-139				

ACCOUNT:	
SCS Engineers - KS	5

PROJECT: C4-052-73682 SDG: L1264151 DATE/TIME: 09/30/20 13:24

PAGE: 76 of 98

QUALITY CONTROL SUMMARY

L1264151-10

Method Blank (MB)

MB) R3574443-2 09/24/						- [
	MB Result	MB Qualifier	MB MDL	MB RDL		2
Analyte	ug/l		ug/l	ug/l		. [
cenaphthene	U		0.0886	1.00		
cenaphthylene	U		0.0921	1.00		3
nthracene	U		0.0804	1.00		L
enzidine	U		3.74	10.0		4
enzo(a)anthracene	U		0.199	1.00		ľ
enzo(b)fluoranthene	U		0.130	1.00		
enzo(k)fluoranthene	U		0.120	1.00		5
enzo(g,h,i)perylene	U		0.121	1.00		L
enzo(a)pyrene	U		0.0381	1.00		6
is(2-chlorethoxy)methane	U		0.116	10.0		6
s(2-chloroethyl)ether	U		0.137	10.0		
,2-oxybis(1-chloropropane)	U		0.210	10.0		7
-Bromophenyl-phenylether	U		0.0877	10.0		Ľ
-Chloronaphthalene	U		0.0648	1.00		1
Chlorophenyl-phenylether	U		0.0926	10.0		
hrysene	U		0.130	1.00		
benz(a,h)anthracene	U		0.0644	1.00		9
2-Dichlorobenzene	U		0.0713	10.0		ΓL
3-Dichlorobenzene	U		0.132	10.0		
4-Dichlorobenzene	U		0.0942	10.0		
3-Dichlorobenzidine	U		0.212	10.0		
4-Dinitrotoluene	U		0.0983	10.0		
6-Dinitrotoluene	U		0.250	10.0		
uoranthene	U		0.102	1.00		
uorene	U		0.0844	1.00		
exachlorobenzene	U		0.0755	1.00		
exachloro-1,3-butadiene	U		0.0968	10.0		
exachlorocyclopentadiene	U		0.0598	10.0		
lexachloroethane	U		0.127	10.0		
ideno(1,2,3-cd)pyrene	U		0.279	1.00		
sophorone	U		0.143	10.0		
aphthalene	U		0.159	1.00		
litrobenzene	U		0.297	10.0		
-Nitrosodimethylamine	U		0.998	10.0		
Nitrosodiphenylamine	U		2.37	10.0		
Nitrosodi-n-propylamine	U		0.261	10.0		
nenanthrene	U		0.112	1.00		
enzylbutyl phthalate	U		0.765	3.00		
is(2-ethylhexyl)phthalate	U		0.895	3.00		
Pi-n-butyl phthalate	U		0.453	3.00		
, ,						

SCS Engineers - KS

C4-052-73682

L1264151

09/30/20 13:24

77 of 98

QUALITY CONTROL SUMMARY L1264151-10

Method Blank (MB)

Method Blank (MB	5)				
(MB) R3574443-2 09/24/	/20 16:09				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	T
Diethyl phthalate	U		0.287	3.00	
Dimethyl phthalate	U		0.260	3.00	³ Ss
Di-n-octyl phthalate	U		0.932	3.00	
Pyrene	U		0.107	1.00	4
1,2,4-Trichlorobenzene	U		0.0698	10.0	⁴ Cr
4-Chloro-3-methylphenol	U		0.131	10.0	
2-Chlorophenol	U		0.133	10.0	⁵Sr
2-Nitrophenol	U		0.117	10.0	
4-Nitrophenol	U		0.143	10.0	6_
Pentachlorophenol	U		0.313	10.0	⁶ Qo
Phenol	U		4.33	10.0	
2,4,6-Trichlorophenol	U		0.100	10.0	G
2,4-Dichlorophenol	U		0.102	10.0	
2,4-Dimethylphenol	U		0.0636	10.0	8
4,6-Dinitro-2-methylphenol	U		1.12	10.0	Ă۱
2,4-Dinitrophenol	U		5.93	10.0	
(S) Nitrobenzene-d5	48.4			10.0-127	°Sc
(S) 2-Fluorobiphenyl	51.4			10.0-130	
(S) p-Terphenyl-d14	72.9			10.0-128	
(S) Phenol-d5	13.2			10.0-120	
(S) 2-Fluorophenol	21.5			10.0-120	
(S) 2,4,6-Tribromophenol	51.0			10.0-155	

Laboratory Control Sample (LCS)

(LCS) R3574443-1 09/24	/20 15:48					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	ug/l	ug/l	%	%		
Acenaphthene	50.0	21.2	42.4	41.0-120		
Acenaphthylene	50.0	23.2	46.4	43.0-120		
Anthracene	50.0	30.5	61.0	45.0-120		
Benzidine	100	27.5	27.5	10.0-120		
Benzo(a)anthracene	50.0	37.0	74.0	47.0-120		
Benzo(b)fluoranthene	50.0	34.0	68.0	46.0-120		
Benzo(k)fluoranthene	50.0	34.2	68.4	46.0-120		
Benzo(g,h,i)perylene	50.0	30.1	60.2	48.0-121		
Benzo(a)pyrene	50.0	34.7	69.4	47.0-120		
Bis(2-chlorethoxy)methane	50.0	20.6	41.2	33.0-120		
Bis(2-chloroethyl)ether	50.0	20.1	40.2	23.0-120		
	ACCOUNT:			PRO	CT: SDG: DATE/TIME:	PAGE:

SCS Engineers - KS

C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24

PAGE: 78 of 98

QUALITY CONTROL SUMMARY

L1264151-10

Laboratory Control Sample (LCS)

SCS Engineers - KS

(LCS) R3574443-1 09/24/20 15:48

	Spike Amount		LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	ug/l	ug/l	%	%				
2,2-oxybis(1-chloropropane)	50.0	18.4	36.8	28.0-120				
4-Bromophenyl-phenylether	50.0	29.9	59.8	45.0-120				3
2-Chloronaphthalene	50.0	21.0	42.0	37.0-120				L
4-Chlorophenyl-phenylether	50.0	26.4	52.8	44.0-120				4
Chrysene	50.0	33.3	66.6	48.0-120				
Dibenz(a,h)anthracene	50.0	31.5	63.0	47.0-120				L
3,3-Dichlorobenzidine	100	59.7	59.7	44.0-120				Ę
2,4-Dinitrotoluene	50.0	34.0	68.0	49.0-124				
2,6-Dinitrotoluene	50.0	29.2	58.4	46.0-120				6
Fluoranthene	50.0	33.7	67.4	51.0-120				
Fluorene	50.0	25.0	50.0	47.0-120				
Hexachlorobenzene	50.0	30.2	60.4	44.0-120				7
Hexachloro-1,3-butadiene	50.0	19.9	39.8	19.0-120				
Hexachlorocyclopentadiene	50.0	11.2	22.4	15.0-120				3
Hexachloroethane	50.0	18.2	36.4	15.0-120				
Indeno(1,2,3-cd)pyrene	50.0	31.9	63.8	49.0-122				L
Isophorone	50.0	23.8	47.6	36.0-120				9
Naphthalene	50.0	16.9	33.8	27.0-120				
Nitrobenzene	50.0	19.7	39.4	27.0-120				
n-Nitrosodimethylamine	50.0	12.1	24.2	10.0-120				
n-Nitrosodiphenylamine	50.0	25.8	51.6	47.0-120				
n-Nitrosodi-n-propylamine	50.0	24.6	49.2	31.0-120				
Phenanthrene	50.0	31.6	63.2	46.0-120				
Benzylbutyl phthalate	50.0	43.0	86.0	43.0-121				
Bis(2-ethylhexyl)phthalate	50.0	41.3	82.6	43.0-122				
Di-n-butyl phthalate	50.0	39.1	78.2	49.0-121				
Diethyl phthalate	50.0	35.2	70.4	48.0-122				
Dimethyl phthalate	50.0	31.4	62.8	48.0-120				
Di-n-octyl phthalate	50.0	38.8	77.6	42.0-125				
Pyrene	50.0	35.6	71.2	47.0-120				
1,2,4-Trichlorobenzene	50.0	18.4	36.8	24.0-120				
4-Chloro-3-methylphenol	50.0	23.8	47.6	40.0-120				
2-Chlorophenol	50.0	16.0	32.0	25.0-120				
2,4-Dichlorophenol	50.0	19.6	39.2	36.0-120				
2,4-Dimethylphenol	50.0	21.6	43.2	33.0-120				
4,6-Dinitro-2-methylphenol	50.0	36.4	72.8	38.0-138				
2,4-Dinitrophenol	50.0	31.1	62.2	10.0-120				
2-Nitrophenol	50.0	19.2	38.4	31.0-120				
4-Nitrophenol	50.0	10.2	20.4	10.0-120				
Pentachlorophenol	50.0	29.3	58.6	23.0-120				
Δ	ACCOUNT:				DJECT:	SDG:	DATE/TIME:	PAGE:
000	Enningers 1/2			01.0		14004154	00/20/20 12:24	70 (00

C4-052-73682

L1264151

DATE/TIME: 09/30/20 13:24 PAGE: 79 of 98

QUALITY CONTROL SUMMARY

L1264151-10

LCS Qualifier

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

Laboratory Control Sample (LCS)

(LCS) R3574443-1 09/24/20 15:48

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	ug/l	ug/l	%	%
Phenol	50.0	5.88	11.8	10.0-120
2,4,6-Trichlorophenol	50.0	24.7	49.4	42.0-120
1,2-Dichlorobenzene	50.0	18.2	36.4	20.0-120
1,3-Dichlorobenzene	50.0	17.9	35.8	17.0-120
1,4-Dichlorobenzene	50.0	18.2	36.4	18.0-120
(S) Nitrobenzene-d5			34.4	10.0-127
(S) 2-Fluorobiphenyl			43.9	10.0-130
(S) p-Terphenyl-d14			75.2	10.0-128
(S) Phenol-d5			11.6	10.0-120
(S) 2-Fluorophenol			17.6	10.0-120
(S) 2,4,6-Tribromophenol			64.5	10.0-155

L1264784-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Acenaphthene	50.0	ND	23.7	21.6	47.4	43.2	1	28.0-120			9.27	25
Acenaphthylene	50.0	ND	26.8	24.1	53.6	48.2	1	31.0-121			10.6	25
Anthracene	50.0	ND	27.7	28.2	55.4	56.4	1	36.0-120			1.79	23
Benzidine	100	ND	55.6	27.9	55.6	27.9	1	10.0-120		<u>J3</u>	66.3	37
Benzo(a)anthracene	50.0	ND	35.4	35.0	70.8	70.0	1	39.0-120			1.14	23
Benzo(b)fluoranthene	50.0	ND	33.2	32.8	66.4	65.6	1	37.0-120			1.21	23
Benzo(k)fluoranthene	50.0	ND	32.2	31.9	64.4	63.8	1	37.0-120			0.936	26
Benzo(g,h,i)perylene	50.0	ND	28.5	28.0	57.0	56.0	1	37.0-123			1.77	25
Benzo(a)pyrene	50.0	ND	34.5	34.5	69.0	69.0	1	37.0-120			0.000	24
Bis(2-chlorethoxy)methane	50.0	ND	23.5	21.6	47.0	43.2	1	17.0-120			8.43	31
Bis(2-chloroethyl)ether	50.0	ND	23.3	20.4	46.6	40.8	1	14.0-120			13.3	33
2,2-oxybis(1-chloropropane)	50.0	ND	22.5	20.4	45.0	40.8	1	18.0-120			9.79	34
4-Bromophenyl-phenylether	50.0	ND	28.5	27.2	57.0	54.4	1	37.0-120			4.67	24
2-Chloronaphthalene	50.0	ND	24.9	22.2	49.8	44.4	1	29.0-120			11.5	28
4-Chlorophenyl-phenylether	50.0	ND	26.9	25.6	53.8	51.2	1	36.0-120			4.95	23
Chrysene	50.0	ND	32.1	31.6	64.2	63.2	1	38.0-120			1.57	23
Dibenz(a,h)anthracene	50.0	ND	30.0	29.5	60.0	59.0	1	36.0-121			1.68	24
3,3-Dichlorobenzidine	100	ND	64.6	62.3	64.6	62.3	1	10.0-134			3.62	30
2,4-Dinitrotoluene	50.0	ND	30.0	31.8	60.0	63.6	1	39.0-125			5.83	25
2,6-Dinitrotoluene	50.0	ND	26.6	28.2	53.2	56.4	1	36.0-120			5.84	27
Fluoranthene	50.0	ND	30.5	31.0	61.0	62.0	1	41.0-121			1.63	22
Fluorene	50.0	ND	25.6	24.4	51.2	48.8	1	37.0-120			4.80	24

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: SCS Engineers - KS C4-052-73682 L1264151 09/30/20 13:24 80 of 98

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

L1264784-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 1264784-06	09/24/20 19:44 · (MS) R3574443-3	09/24/20 20.06	• (MSD) R3574443-4	09/24/20 20.27
(00) 2120 170 1 00	00/2 //20 10.11 (110) 100/11100	00/21/2020.00		00/21/2020.2/

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Hexachlorobenzene	50.0	ND	27.3	26.8	54.6	53.6	1	35.0-122			1.85	24	
Hexachloro-1,3-butadiene	50.0	ND	24.6	22.1	49.2	44.2	1	12.0-120			10.7	34	
Hexachlorocyclopentadiene	50.0	ND	15.3	12.5	30.6	25.0	1	10.0-120			20.1	33	
Hexachloroethane	50.0	ND	22.5	20.4	45.0	40.8	1	10.0-120			9.79	40	
Indeno(1,2,3-cd)pyrene	50.0	ND	30.0	29.8	60.0	59.6	1	38.0-125			0.669	24	
Isophorone	50.0	ND	26.0	24.3	52.0	48.6	1	21.0-120			6.76	27	
Naphthalene	50.0	ND	21.8	19.4	43.6	38.8	1	10.0-120			11.7	31	
Nitrobenzene	50.0	ND	24.2	21.5	48.4	43.0	1	12.0-120			11.8	30	
n-Nitrosodimethylamine	50.0	ND	14.2	13.3	28.4	26.6	1	10.0-120			6.55	40	
n-Nitrosodiphenylamine	50.0	ND	27.3	26.7	54.6	53.4	1	37.0-120			2.22	24	
n-Nitrosodi-n-propylamine	50.0	ND	27.9	25.8	55.8	51.6	1	16.0-120			7.82	30	
Phenanthrene	50.0	ND	28.4	28.5	56.8	57.0	1	33.0-120			0.351	22	
Benzylbutyl phthalate	50.0	ND	40.3	41.2	80.6	82.4	1	34.0-126			2.21	24	
Bis(2-ethylhexyl)phthalate	50.0	ND	39.8	39.5	79.6	79.0	1	33.0-126			0.757	25	
Di-n-butyl phthalate	50.0	ND	36.6	37.1	73.2	74.2	1	35.0-128			1.36	23	
Diethyl phthalate	50.0	ND	32.2	33.0	64.4	66.0	1	39.0-125			2.45	24	
Dimethyl phthalate	50.0	ND	29.6	29.7	59.2	59.4	1	37.0-120			0.337	24	
Di-n-octyl phthalate	50.0	ND	37.2	36.9	74.4	73.8	1	25.0-135			0.810	26	
Pyrene	50.0	ND	32.7	33.1	65.4	66.2	1	39.0-120			1.22	22	
1,2,4-Trichlorobenzene	50.0	ND	22.9	20.2	45.8	40.4	1	15.0-120			12.5	31	
4-Chloro-3-methylphenol	50.0	ND	24.2	24.1	48.4	48.2	1	26.0-120			0.414	27	
2-Chlorophenol	50.0	ND	20.3	18.0	40.6	36.0	1	18.0-120			12.0	34	
2,4-Dichlorophenol	50.0	ND	22.7	21.2	45.4	42.4	1	19.0-120			6.83	27	
2,4-Dimethylphenol	50.0	ND	25.1	23.6	50.2	47.2	1	15.0-120			6.16	28	
4,6-Dinitro-2-methylphenol	50.0	ND	32.6	33.7	65.2	67.4	1	10.0-144			3.32	39	
2,4-Dinitrophenol	50.0	ND	29.4	32.7	58.8	65.4	1	10.0-120			10.6	40	
2-Nitrophenol	50.0	ND	23.0	20.5	46.0	41.0	1	20.0-120			11.5	30	
4-Nitrophenol	50.0	ND	ND	10.4	18.3	20.8	1	10.0-120			13.0	40	
Pentachlorophenol	50.0	ND	26.8	29.3	53.6	58.6	1	10.0-128			8.91	37	
Phenol	50.0	ND	ND	ND	14.9	15.0	1	10.0-120			0.804	40	
2,4,6-Trichlorophenol	50.0	ND	26.7	25.2	53.4	50.4	1	26.0-120			5.78	31	
1,2-Dichlorobenzene	50.0	ND	22.8	20.7	45.6	41.4	1	18.0-120			9.66	40	
1,3-Dichlorobenzene	50.0	ND	22.6	20.3	45.2	40.6	1	15.0-120			10.7	40	
1,4-Dichlorobenzene	50.0	ND	22.4	20.4	44.8	40.8	1	17.0-120			9.35	40	
(S) Nitrobenzene-d5					42.2	37.1		10.0-127					
(S) 2-Fluorobiphenyl					51.8	45.6		10.0-130					
(S) p-Terphenyl-d14					71.6	71.1		10.0-128					
(S) Phenol-d5					14.5	14.0		10.0-120					
(S) 2-Fluorophenol					23.0	20.9		10.0-120					
(S) 2,4,6-Tribromophenol					56.0	58.0		10.0-155					
(-, -, ,,													
А	ACCOUNT:			PRC	JECT:			SDG:		DATE/	TIME:		PAGE:
SCS	Engineers - KS			C4-05	2-73682		L	1264151		09/30/2	0 13:24	8	31 of 98

QUALITY CONTROL SUMMARY

L1264151-11

*

Method Blank (MB)

(MB) R3575053-2 09/25/						Ср
Analista	MB Result	MB Qualifier	MB MDL	MB RDL		² Tc
Analyte	ug/l		ug/l	ug/l		
cenaphthene	U		0.0886	1.00		3
cenaphthylene	U		0.0921	1.00		ິSs
Inthracene	U		0.0804	1.00		
Benzidine	U		3.74	10.0		⁴ Cr
Benzo(a)anthracene	U		0.199	1.00		
Benzo(b)fluoranthene	U		0.130	1.00		5
Benzo(k)fluoranthene	U		0.120	1.00		Sr
Benzo(g,h,i)perylene	U		0.121	1.00		
Benzo(a)pyrene	U		0.0381	1.00		6
Bis(2-chlorethoxy)methane	U		0.116	10.0		ိဝ္ဂ
Bis(2-chloroethyl)ether	U		0.137	10.0		7
2,2-Oxybis(1-Chloropropane)	U		0.210	10.0		/ GI
1-Bromophenyl-phenylether	U		0.0877	10.0		
2-Chloronaphthalene	U		0.0648	1.00		8
l-Chlorophenyl-phenylether	U		0.0926	10.0		Ă
Chrysene	U		0.130	1.00		
ibenz(a,h)anthracene	U		0.0644	1.00		S
2-Dichlorobenzene	U		0.0713	10.0		
3-Dichlorobenzene	U		0.132	10.0		
4-Dichlorobenzene	U		0.0942	10.0		
,3-Dichlorobenzidine	U		0.212	10.0		
,4-Dinitrotoluene	U		0.0983	10.0		
,6-Dinitrotoluene	U		0.250	10.0		
luoranthene	U		0.102	1.00		
luorene	U		0.0844	1.00		
lexachlorobenzene	U		0.0755	1.00		
lexachloro-1,3-butadiene	U		0.0968	10.0		
lexachlorocyclopentadiene	U		0.0598	10.0		
lexachloroethane	U		0.127	10.0		
ndeno(1,2,3-cd)pyrene	U		0.279	1.00		
sophorone	U		0.143	10.0		
laphthalene	U		0.159	1.00		
litrobenzene	U		0.297	10.0		
-Nitrosodimethylamine	U		0.998	10.0		
-Nitrosodiphenylamine	U		2.37	10.0		
-Nitrosodi-n-propylamine	U		0.261	10.0		
henanthrene	U		0.201	1.00		
Benzylbutyl phthalate	U		0.765	3.00		
	U		0.895	3.00		
Bis(2-ethylhexyl)phthalate Di-n-butyl phthalate	U		0.895	3.00		
i-ii-butyi piitiialate	0		0.455	3.00		

SCS Engineers - KS

C4-052-73682

L1264151

09/30/20 13:24

82 of 98

QUALITY CONTROL SUMMARY

L1264151-11

Ср

Method Blank (MB)

(MB) R3575053-2 09/25	/20 12:31						•
	MB Result	MB Qualifier	MB MDL	MB RDL			5
Analyte	ug/l		ug/l	ug/l			Ĺ
Diethyl phthalate	U		0.287	3.00			1 L
Dimethyl phthalate	U		0.260	3.00			
Di-n-octyl phthalate	U		0.932	3.00			Ľ
Pyrene	U		0.107	1.00			L r
1,2,4-Trichlorobenzene	U		0.0698	10.0			
4-Chloro-3-methylphenol	U		0.131	10.0			
2-Chlorophenol	U		0.133	10.0			
2,4-Dichlorophenol	U		0.102	10.0			
2,4-Dimethylphenol	U		0.0636	10.0			
4,6-Dinitro-2-methylphenol	U		1.12	10.0			
2,4-Dinitrophenol	U		5.93	10.0			
2-Nitrophenol	U		0.117	10.0			
4-Nitrophenol	U		0.143	10.0			
Pentachlorophenol	U		0.313	10.0			l (
Phenol	U		4.33	10.0			
2,4,6-Trichlorophenol	U		0.100	10.0			Ľ
(S) 2-Fluorophenol	33.3			10.0-120			
(S) Phenol-d5	20.3			10.0-120			
(S) Nitrobenzene-d5	51.5			10.0-127			
(S) 2-Fluorobiphenyl	59.7			10.0-130			
(S) 2,4,6-Tribromophenol	58.5			10.0-155			
(S) p-Terphenyl-d14	61.4			10.0-128			

Laboratory Control Sample (LCS)

(LCS) R3575053-1 09/25	5/20 12:10							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	ug/l	ug/l	%	%				
Acenaphthene	50.0	29.7	59.4	41.0-120				
Acenaphthylene	50.0	32.4	64.8	43.0-120				
Anthracene	50.0	31.8	63.6	45.0-120				
Benzidine	100	28.5	28.5	10.0-120				
Benzo(a)anthracene	50.0	33.0	66.0	47.0-120				
Benzo(b)fluoranthene	50.0	31.8	63.6	46.0-120				
Benzo(k)fluoranthene	50.0	31.5	63.0	46.0-120				
Benzo(g,h,i)perylene	50.0	34.8	69.6	48.0-121				
Benzo(a)pyrene	50.0	32.0	64.0	47.0-120				
Bis(2-chlorethoxy)methane	50.0	28.7	57.4	33.0-120				
Bis(2-chloroethyl)ether	50.0	35.4	70.8	23.0-120				
	ACCOUNT:			PDC	JECT:	SDG:	DATE/TIME:	PAGE:

SCS Engineers - KS

PROJECT: C4-052-73682

SDG: L1264151

DATE/TIME: 09/30/20 13:24

PAGE: 83 of 98

QUALITY CONTROL SUMMARY

L1264151-11

Laboratory Control Sample (LCS)

SCS Engineers - KS

(LCS) R3575053-1 09/25/20 12:10

	Spike Amount		LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	ug/l	ug/l	%	%		
2,2-Oxybis(1-Chloropropane)	50.0	32.3	64.6	28.0-120		
4-Bromophenyl-phenylether	50.0	33.7	67.4	45.0-120		
2-Chloronaphthalene	50.0	31.2	62.4	37.0-120		
4-Chlorophenyl-phenylether	50.0	30.6	61.2	44.0-120		
Chrysene	50.0	30.3	60.6	48.0-120		
Dibenz(a,h)anthracene	50.0	34.6	69.2	47.0-120		
1,2-Dichlorobenzene	50.0	29.7	59.4	20.0-120		
1,3-Dichlorobenzene	50.0	28.7	57.4	17.0-120		
1,4-Dichlorobenzene	50.0	29.4	58.8	18.0-120		
3,3-Dichlorobenzidine	100	70.7	70.7	44.0-120		
2,4-Dinitrotoluene	50.0	34.1	68.2	49.0-124		
2,6-Dinitrotoluene	50.0	33.3	66.6	46.0-120		
Fluoranthene	50.0	31.6	63.2	51.0-120		
Fluorene	50.0	30.7	61.4	47.0-120		
Hexachlorobenzene	50.0	32.9	65.8	44.0-120		
Hexachloro-1,3-butadiene	50.0	29.4	58.8	19.0-120		
Hexachlorocyclopentadiene	50.0	12.5	25.0	15.0-120		
Hexachloroethane	50.0	29.4	58.8	15.0-120		
Indeno(1,2,3-cd)pyrene	50.0	34.9	69.8	49.0-122		
Isophorone	50.0	28.7	57.4	36.0-120		
Naphthalene	50.0	27.9	55.8	27.0-120		
Nitrobenzene	50.0	28.8	57.6	27.0-120		
n-Nitrosodimethylamine	50.0	21.1	42.2	10.0-120		
n-Nitrosodiphenylamine	50.0	32.7	65.4	47.0-120		
n-Nitrosodi-n-propylamine	50.0	33.9	67.8	31.0-120		
Phenanthrene	50.0	31.5	63.0	46.0-120		
Benzylbutyl phthalate	50.0	35.5	71.0	43.0-121		
Bis(2-ethylhexyl)phthalate	50.0	34.5	69.0	43.0-122		
Di-n-butyl phthalate	50.0	34.8	69.6	49.0-121		
Diethyl phthalate	50.0	33.6	67.2	48.0-122		
Dimethyl phthalate	50.0	33.0	66.0	48.0-120		
Di-n-octyl phthalate	50.0	32.9	65.8	42.0-125		
Pyrene	50.0	32.0	64.0	47.0-120		
1,2,4-Trichlorobenzene	50.0	26.5	53.0	24.0-120		
4-Chloro-3-methylphenol	50.0	27.7	55.4	40.0-120		
2-Chlorophenol	50.0	29.9	59.8	25.0-120		
2,4-Dichlorophenol	50.0	28.3	56.6	36.0-120		
2,4-Dimethylphenol	50.0	31.7	63.4	33.0-120		
4,6-Dinitro-2-methylphenol	50.0	32.1	64.2	38.0-138		
2,4-Dinitrophenol	50.0	29.2	58.4	10.0-120		

L1264151

C4-052-73682

09/30/20 13:24

84 of 98

QUALITY CONTROL SUMMARY

L1264151-11

LCS Qualifier

Laboratory Control Sample (LCS)

(LCS) R3575053-1 09/25/20 12:10

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	ug/l	ug/l	%	%
2-Nitrophenol	50.0	33.2	66.4	31.0-120
4-Nitrophenol	50.0	15.4	30.8	10.0-120
Pentachlorophenol	50.0	28.5	57.0	23.0-120
Phenol	50.0	12.9	25.8	10.0-120
2,4,6-Trichlorophenol	50.0	32.5	65.0	42.0-120
(S) 2-Fluorophenol			38.6	10.0-120
(S) Phenol-d5			25.3	10.0-120
(S) Nitrobenzene-d5			51.0	10.0-127
(S) 2-Fluorobiphenyl			60.4	10.0-130
(S) 2,4,6-Tribromophenol			72.0	10.0-155
(S) p-Terphenyl-d14			65.1	10.0-128

L1265466-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Acenaphthene	50.0	ND	29.5	28.2	59.0	56.4	1	28.0-120			4.51	25
Acenaphthylene	50.0	ND	32.1	31.3	64.2	62.6	1	31.0-121			2.52	25
Anthracene	50.0	ND	32.0	30.8	64.0	61.6	1	36.0-120			3.82	23
Benzidine	100	ND	ND	ND	0.000	0.000	1	10.0-120	<u>J6</u>	<u>J6</u>	0.000	37
Benzo(a)anthracene	50.0	ND	33.2	31.5	66.4	63.0	1	39.0-120			5.26	23
Benzo(b)fluoranthene	50.0	ND	31.2	30.2	62.4	60.4	1	37.0-120			3.26	23
Benzo(k)fluoranthene	50.0	ND	30.5	29.6	61.0	59.2	1	37.0-120			3.00	26
Benzo(g,h,i)perylene	50.0	ND	35.4	34.0	70.8	68.0	1	37.0-123			4.03	25
Benzo(a)pyrene	50.0	ND	31.8	31.1	63.6	62.2	1	37.0-120			2.23	24
Bis(2-chlorethoxy)methane	50.0	ND	27.9	27.6	55.8	55.2	1	17.0-120			1.08	31
Bis(2-chloroethyl)ether	50.0	ND	34.9	33.2	69.8	66.4	1	14.0-120			4.99	33
2,2-Oxybis(1-Chloropropane)	50.0	ND	32.4	34.0	64.8	68.0	1	18.0-120			4.82	34
4-Bromophenyl-phenylether	50.0	ND	34.5	33.1	69.0	66.2	1	37.0-120			4.14	24
2-Chloronaphthalene	50.0	ND	30.7	30.1	61.4	60.2	1	29.0-120			1.97	28
4-Chlorophenyl-phenylether	50.0	ND	31.0	30.0	62.0	60.0	1	36.0-120			3.28	23
Chrysene	50.0	ND	30.7	29.9	61.4	59.8	1	38.0-120			2.64	23
Dibenz(a,h)anthracene	50.0	ND	35.6	34.0	71.2	68.0	1	36.0-121			4.60	24
1,2-Dichlorobenzene	50.0	ND	30.0	28.3	60.0	56.6	1	18.0-120			5.83	40
1,3-Dichlorobenzene	50.0	ND	29.3	27.4	58.6	54.8	1	15.0-120			6.70	40
1,4-Dichlorobenzene	50.0	ND	29.1	27.7	58.2	55.4	1	17.0-120			4.93	40
3,3-Dichlorobenzidine	100	ND	48.6	26.7	48.6	26.7	1	10.0-134		<u>J3</u>	58.2	30
2,4-Dinitrotoluene	50.0	ND	34.8	32.7	69.6	65.4	1	39.0-125			6.22	25

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: SCS Engineers - KS C4-052-73682 L1264151 09/30/20 13:24 85 of 98

Cn

Sr

Sc

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

L1265466-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1265466-01 09/25	6/20 18:14 • (MS)	R3575053-3 (9/25/20 18:36	6 • (MSD) R357	5053-4 09/2	5/20 18:57							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
2,6-Dinitrotoluene	50.0	ND	33.6	32.2	67.2	64.4	1	36.0-120			4.26	27	
Fluoranthene	50.0	ND	33.6	31.4	67.2	62.8	1	41.0-121			6.77	22	
Fluorene	50.0	ND	30.9	30.2	61.8	60.4	1	37.0-120			2.29	24	
Hexachlorobenzene	50.0	ND	34.1	32.1	68.2	64.2	1	35.0-122			6.04	24	
Hexachloro-1,3-butadiene	50.0	ND	29.1	28.9	58.2	57.8	1	12.0-120			0.690	34	
Hexachlorocyclopentadiene	50.0	ND	17.4	17.8	34.8	35.6	1	10.0-120			2.27	33	
Hexachloroethane	50.0	ND	29.8	28.2	59.6	56.4	1	10.0-120			5.52	40	
Indeno(1,2,3-cd)pyrene	50.0	ND	36.2	35.1	72.4	70.2	1	38.0-125			3.09	24	
Isophorone	50.0	ND	29.1	28.2	58.2	56.4	1	21.0-120			3.14	27	
Naphthalene	50.0	ND	27.7	26.5	55.4	53.0	1	10.0-120			4.43	31	
Nitrobenzene	50.0	ND	28.3	27.6	56.6	55.2	1	12.0-120			2.50	30	
n-Nitrosodimethylamine	50.0	ND	20.0	19.6	40.0	39.2	1	10.0-120			2.02	40	
n-Nitrosodiphenylamine	50.0	ND	24.5	29.0	49.0	58.0	1	37.0-120			16.8	24	
n-Nitrosodi-n-propylamine	50.0	ND	34.5	33.4	69.0	66.8	1	16.0-120			3.24	30	
Phenanthrene	50.0	ND	32.1	30.9	64.2	61.8	1	33.0-120			3.81	22	
Benzylbutyl phthalate	50.0	ND	37.0	35.2	74.0	70.4	1	34.0-126			4.99	24	
Bis(2-ethylhexyl)phthalate	50.0	ND	34.9	34.7	69.8	69.4	1	33.0-126			0.575	25	
Di-n-butyl phthalate	50.0	ND	36.2	33.8	72.4	67.6	1	35.0-128			6.86	23	
Diethyl phthalate	50.0	ND	35.3	32.9	70.6	65.8	1	39.0-125			7.04	24	
Dimethyl phthalate	50.0	ND	32.8	32.1	65.6	64.2	1	37.0-120			2.16	24	
Di-n-octyl phthalate	50.0	ND	34.3	33.9	68.6	67.8	1	25.0-135			1.17	26	
Pyrene	50.0	ND	31.6	30.7	63.2	61.4	1	39.0-120			2.89	22	
1,2,4-Trichlorobenzene	50.0	ND	26.3	25.2	52.6	50.4	1	15.0-120			4.27	31	
4-Chloro-3-methylphenol	50.0	ND	27.1	28.7	54.2	57.4	1	26.0-120			5.73	27	
2-Chlorophenol	50.0	ND	29.5	30.4	59.0	60.8	1	18.0-120			3.01	34	
2,4-Dichlorophenol	50.0	ND	28.3	28.2	56.6	56.4	1	19.0-120			0.354	27	
2,4-Dimethylphenol	50.0	ND	30.8	31.5	61.6	63.0	1	15.0-120			2.25	28	
4,6-Dinitro-2-methylphenol	50.0	ND	34.6	33.4	69.2	66.8	1	10.0-144			3.53	39	
2,4-Dinitrophenol	50.0	ND	35.3	34.7	70.6	69.4	1	10.0-120			1.71	40	
2-Nitrophenol	50.0	ND	31.7	29.5	63.4	59.0	1	20.0-120			7.19	30	
4-Nitrophenol	50.0	ND	13.8	22.4	27.6	44.8	1	10.0-120		<u>J3</u>	47.5	40	
Pentachlorophenol	50.0	ND	32.4	31.7	64.8	63.4	1	10.0-128			2.18	37	
Phenol	50.0	69.6	16.1	27.7	0.000	0.000	1	10.0-120	<u>J6</u>	<u>J3 J6</u>	53.0	40	
2,4,6-Trichlorophenol	50.0	ND	33.0	32.2	66.0	64.4	1	26.0-120			2.45	31	
(S) 2-Fluorophenol					34.4	48.5		10.0-120					
(S) Phenol-d5					22.8	37.2		10.0-120					
(S) Nitrobenzene-d5					50.0	49.9		10.0-127					
(S) 2-Fluorobiphenyl					62.1	61.8		10.0-130					
(S) 2,4,6-Tribromophenol					79.0	72.5		10.0-155					
(S) p-Terphenyl-d14					62.7	62.7		10.0-128					
								6D.6		D			D 1 0 5
	ACCOUNT:				DJECT:			SDG:		DATE			PAGE:
SCS	Engineers - KS			C4-05	52-73682		Ľ	1264151		09/30/2	20 13:24		86 of 98

QUALITY CONTROL SUMMARY L1264151-11

Ср

Тс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L1265466-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1265466-05 09/25/20 20:23 • (MS) R3575053-5 09/25/20 20:45 • (MSD) R3575053-6 09/25/20 21:06												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Acenaphthene	50.0	ND	29.5	27.3	59.0	54.6	1	28.0-120			7.75	25
Acenaphthylene	50.0	ND	32.7	29.8	65.4	59.6	1	31.0-121			9.28	25
Anthracene	50.0	ND	32.2	28.8	64.4	57.6	1	36.0-120			11.1	23
Benzidine	100	ND	ND	ND	0.000	0.000	1	10.0-120	<u>J6</u>	<u>J6</u>	0.000	37
Benzo(a)anthracene	50.0	ND	33.0	29.8	66.0	59.6	1	39.0-120			10.2	23
Benzo(b)fluoranthene	50.0	ND	31.6	28.5	63.2	57.0	1	37.0-120			10.3	23
Benzo(k)fluoranthene	50.0	ND	30.9	27.8	61.8	55.6	1	37.0-120			10.6	26
Benzo(g,h,i)perylene	50.0	ND	35.8	32.0	71.6	64.0	1	37.0-123			11.2	25
Benzo(a)pyrene	50.0	ND	32.2	28.3	64.4	56.6	1	37.0-120			12.9	24
Bis(2-chlorethoxy)methane	50.0	ND	28.7	26.1	57.4	52.2	1	17.0-120			9.49	31
Bis(2-chloroethyl)ether	50.0	ND	35.7	32.7	71.4	65.4	1	14.0-120			8.77	33
2,2-Oxybis(1-Chloropropane)	50.0	ND	38.1	31.7	76.2	63.4	1	18.0-120			18.3	34
4-Bromophenyl-phenylether	50.0	ND	34.5	31.0	69.0	62.0	1	37.0-120			10.7	24
2-Chloronaphthalene	50.0	ND	31.4	29.0	62.8	58.0	1	29.0-120			7.95	28
4-Chlorophenyl-phenylether	50.0	ND	31.0	28.3	62.0	56.6	1	36.0-120			9.11	23
Chrysene	50.0	ND	30.2	27.4	60.4	54.8	1	38.0-120			9.72	23
Dibenz(a,h)anthracene	50.0	ND	36.0	32.5	72.0	65.0	1	36.0-121			10.2	24
1,2-Dichlorobenzene	50.0	ND	31.4	28.8	62.8	57.6	1	18.0-120			8.64	40
1,3-Dichlorobenzene	50.0	ND	31.0	27.7	62.0	55.4	1	15.0-120			11.2	40
1,4-Dichlorobenzene	50.0	ND	30.8	28.1	61.6	56.2	1	17.0-120			9.17	40
3,3-Dichlorobenzidine	100	ND	19.3	24.3	19.3	24.3	1	10.0-134			22.9	30
2,4-Dinitrotoluene	50.0	ND	35.3	31.9	70.6	63.8	1	39.0-125			10.1	25
2,6-Dinitrotoluene	50.0	ND	34.3	30.2	68.6	60.4	1	36.0-120			12.7	27
Fluoranthene	50.0	ND	32.6	29.4	65.2	58.8	1	41.0-121			10.3	22
Fluorene	50.0	ND	31.1	29.0	62.2	58.0	1	37.0-120			6.99	24
Hexachlorobenzene	50.0	ND	34.4	29.9	68.8	59.8	1	35.0-122			14.0	24
Hexachloro-1,3-butadiene	50.0	ND	30.6	28.4	61.2	56.8	1	12.0-120			7.46	34
Hexachlorocyclopentadiene	50.0	ND	15.8	13.4	31.6	26.8	1	10.0-120			16.4	33
Hexachloroethane	50.0	ND	30.8	28.3	61.6	56.6	1	10.0-120			8.46	40
Indeno(1,2,3-cd)pyrene	50.0	ND	36.9	32.8	73.8	65.6	1	38.0-125			11.8	24
Isophorone	50.0	ND	29.7	27.3	59.4	54.6	1	21.0-120			8.42	27
Naphthalene	50.0	ND	28.2	26.1	56.4	52.2	1	10.0-120			7.73	31
Nitrobenzene	50.0	ND	29.3	26.8	58.6	53.6	1	12.0-120			8.91	30
n-Nitrosodimethylamine	50.0	ND	22.4	19.9	44.8	39.8	1	10.0-120			11.8	40
n-Nitrosodiphenylamine	50.0	ND	33.5	29.8	67.0	59.6	1	37.0-120			11.7	24
n-Nitrosodi-n-propylamine	50.0	ND	35.4	32.2	70.8	64.4	1	16.0-120			9.47	30
Phenanthrene	50.0	ND	32.5	28.8	65.0	57.6	1	33.0-120			12.1	22
Benzylbutyl phthalate	50.0	ND	36.3	32.6	72.6	65.2	1	34.0-126			10.7	24
Bis(2-ethylhexyl)phthalate	50.0	ND	35.6	32.2	71.2	64.4	1	33.0-126			10.0	25
Di-n-butyl phthalate	50.0	ND	36.4	31.8	72.8	63.6	1	35.0-128			13.5	23

ACCOUNT: SCS Engineers - KS

PROJECT: C4-052-73682

SDG: L1264151

09/30/20 13:24

DATE/TIME:

PAGE: 87 of 98

Ср

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

L1265466-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analista	•	5					Dilution			MOD Quaille		
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Diethyl phthalate	50.0	ND	35.3	31.3	70.6	62.6	1	39.0-125			12.0	24
Dimethyl phthalate	50.0	ND	33.7	30.8	67.4	61.6	1	37.0-120			8.99	24
Di-n-octyl phthalate	50.0	ND	35.2	31.4	70.4	62.8	1	25.0-135			11.4	26
Pyrene	50.0	ND	31.3	28.1	62.6	56.2	1	39.0-120			10.8	22
1,2,4-Trichlorobenzene	50.0	ND	27.8	25.4	55.6	50.8	1	15.0-120			9.02	31
4-Chloro-3-methylphenol	50.0	ND	30.1	26.7	60.2	53.4	1	26.0-120			12.0	27
2-Chlorophenol	50.0	ND	33.2	30.0	66.4	60.0	1	18.0-120			10.1	34
2,4-Dichlorophenol	50.0	ND	29.5	27.6	59.0	55.2	1	19.0-120			6.65	27
2,4-Dimethylphenol	50.0	ND	33.4	30.8	66.8	61.6	1	15.0-120			8.10	28
4,6-Dinitro-2-methylphenol	50.0	ND	35.7	31.6	71.4	63.2	1	10.0-144			12.2	39
2,4-Dinitrophenol	50.0	ND	37.4	33.2	74.8	66.4	1	10.0-120			11.9	40
2-Nitrophenol	50.0	ND	30.8	29.0	61.6	58.0	1	20.0-120			6.02	30
4-Nitrophenol	50.0	ND	23.4	21.6	46.8	43.2	1	10.0-120			8.00	40
Pentachlorophenol	50.0	ND	33.9	30.4	67.8	60.8	1	10.0-128			10.9	37
Phenol	50.0	ND	58.9	24.4	118	48.8	1	10.0-120		<u>J3</u>	82.8	40
2,4,6-Trichlorophenol	50.0	ND	34.5	31.2	69.0	62.4	1	26.0-120			10.0	31
(S) 2-Fluorophenol					52.5	48.4		10.0-120				
(S) Phenol-d5					40.7	36.2		10.0-120				
(S) Nitrobenzene-d5					51.9	47.0		10.0-127				
(S) 2-Fluorobiphenyl					65.1	56.6		10.0-130				
(S) 2,4,6-Tribromophenol					78.0	70.5		10.0-155				
(S) p-Terphenyl-d14					65.6	58.3		10.0-128				

SDG: L1264151 DATE/TIME: 09/30/20 13:24

PAGE: 88 of 98

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method Blank (MB)

			MB MDL	MB RDL		2
Analyte	mg/kg	MB Qualifier	mg/kg	mg/kg		Tc
Acenaphthene	U		0.00539	0.0333		
Acenaphthylene	U		0.00469	0.0333		³ Ss
Anthracene	U		0.00593	0.0333		5.
Benzidine	U		0.0626	1.67		4
Benzo(a)anthracene	U		0.00587	0.0333		C
Benzo(b)fluoranthene	U		0.00621	0.0333		
Benzo(k)fluoranthene	U		0.00592	0.0333		⁵Sr
Benzo(g,h,i)perylene	U		0.00609	0.0333		
Benzo(a)pyrene	U		0.00619	0.0333		6
Bis(2-chlorethoxy)methane	U		0.0100	0.333		ĨQ
Bis(2-chloroethyl)ether	U		0.0110	0.333		
2,2-oxybis(1-chloropropane)	U		0.0144	0.333		⁷ G
4-Bromophenyl-phenylether	U		0.0117	0.333		
2-Chloronaphthalene	U		0.00585	0.0333		8
4-Chlorophenyl-phenylether	U		0.0116	0.333		Ă
Chrysene	U		0.00662	0.0333		
Dibenz(a,h)anthracene	U		0.00923	0.0333		⁹ Sc
3,3-Dichlorobenzidine	U		0.0123	0.333		
2,4-Dinitrotoluene	U		0.00955	0.333		
2,6-Dinitrotoluene	U		0.0109	0.333		
Fluoranthene	U		0.00601	0.0333		
Fluorene	U		0.00542	0.0333		
Hexachlorobenzene	U		0.0118	0.333		
Hexachloro-1,3-butadiene	U		0.0112	0.333		
Hexachlorocyclopentadiene	U		0.0175	0.333		
Hexachloroethane	U		0.0131	0.333		
Indeno(1,2,3-cd)pyrene	U		0.00941	0.0333		
Isophorone	U		0.0102	0.333		
Naphthalene	U		0.00836	0.0333		
Nitrobenzene	U		0.0116	0.333		
n-Nitrosodimethylamine	U		0.0494	0.333		
n-Nitrosodiphenylamine	U		0.0252	0.333		
n-Nitrosodi-n-propylamine	U		0.0111	0.333		
Phenanthrene	U		0.00661	0.0333		
Benzylbutyl phthalate	U		0.0104	0.333		
Bis(2-ethylhexyl)phthalate	U		0.0422	0.333		
Di-n-butyl phthalate	U		0.0114	0.333		
Diethyl phthalate	U		0.0110	0.333		
Dimethyl phthalate	U		0.0706	0.333		
Di-n-octyl phthalate	U		0.0225	0.333		

SCS Engineers - KS

C4-052-73682

SDG: L1264151 DATE/TIME: 09/30/20 13:24 PAGE: 89 of 98

QUALITY CONTROL SUMMARY

)				1
(MB) R3575695-2 09/29	/20 08:31				Ľ
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	2,
Pyrene	U		0.00648	0.0333	
1,2,4-Trichlorobenzene	U		0.0104	0.333	3
4-Chloro-3-methylphenol	U		0.0108	0.333	Ľ
2-Chlorophenol	U		0.0110	0.333	4
2,4-Dichlorophenol	U		0.00970	0.333	4
2,4-Dimethylphenol	U		0.00870	0.333	
4,6-Dinitro-2-methylphenol	U		0.0755	0.333	5
2,4-Dinitrophenol	U		0.0779	0.333	
2-Nitrophenol	U		0.0119	0.333	6
4-Nitrophenol	U		0.0104	0.333	6
Pentachlorophenol	U		0.00896	0.333	
Phenol	U		0.0134	0.333	7
2,4,6-Trichlorophenol	U		0.0107	0.333	
(S) Nitrobenzene-d5	43.8			10.0-122	8
(S) 2-Fluorobiphenyl	54.4			15.0-120	ľ
(S) p-Terphenyl-d14	64.9			10.0-120	
(S) Phenol-d5	51.4			10.0-120	9
(S) 2-Fluorophenol	57.7			12.0-120	L
(S) 2,4,6-Tribromophenol	61.3			10.0-127	

Laboratory Control Sample (LCS)

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	mg/kg	mg/kg	%	%			
Acenaphthene	0.666	0.422	63.4	38.0-120			
Acenaphthylene	0.666	0.447	67.1	40.0-120			
Anthracene	0.666	0.470	70.6	42.0-120			
Benzidine	1.33	0.349	26.2	10.0-120			
Benzo(a)anthracene	0.666	0.547	82.1	44.0-120			
Benzo(b)fluoranthene	0.666	0.516	77.5	43.0-120			
Benzo(k)fluoranthene	0.666	0.524	78.7	44.0-120			
Benzo(g,h,i)perylene	0.666	0.506	76.0	43.0-120			
Benzo(a)pyrene	0.666	0.564	84.7	45.0-120			
Bis(2-chlorethoxy)methane	0.666	0.334	50.2	20.0-120			
Bis(2-chloroethyl)ether	0.666	0.440	66.1	16.0-120			
2,2-Oxybis(1-Chloropropane)	0.666	0.407	61.1	23.0-120			
4-Bromophenyl-phenylether	0.666	0.488	73.3	40.0-120			
2-Chloronaphthalene	0.666	0.435	65.3	35.0-120			

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1264151 DATE/TIME: 09/30/20 13:24 PAGE: 90 of 98

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Laboratory Control Sample (LCS)

(LCS) R3575695-1 09/29		LCS Result	LCS Rec.	Doc Limite	LCS Qualifier
Analyto	Spike Amount		LUS Rec. %	Rec. Limits %	LCS Qualifier
Analyte	mg/kg	mg/kg			
4-Chlorophenyl-phenylether	0.666	0.476	71.5	40.0-120	
Chrysene Dite and the state	0.666	0.500	75.1	43.0-120	
Dibenz(a,h)anthracene	0.666	0.527	79.1	44.0-120	
3,3-Dichlorobenzidine	1.33	1.03	77.4	28.0-120	
2,4-Dinitrotoluene	0.666	0.568	85.3	45.0-120	
2,6-Dinitrotoluene	0.666	0.510	76.6	42.0-120	
Fluoranthene	0.666	0.500	75.1	44.0-120	
Fluorene	0.666	0.459	68.9	41.0-120	
Hexachlorobenzene	0.666	0.478	71.8	39.0-120	
Hexachloro-1,3-butadiene	0.666	0.393	59.0	15.0-120	
Hexachlorocyclopentadiene	0.666	0.296	44.4	15.0-120	
Hexachloroethane	0.666	0.417	62.6	17.0-120	
Indeno(1,2,3-cd)pyrene	0.666	0.530	79.6	45.0-120	
Isophorone	0.666	0.328	49.2	23.0-120	
Naphthalene	0.666	0.347	52.1	18.0-120	
Nitrobenzene	0.666	0.330	49.5	17.0-120	
n-Nitrosodimethylamine	0.666	0.424	63.7	10.0-125	
n-Nitrosodiphenylamine	0.666	0.448	67.3	40.0-120	
n-Nitrosodi-n-propylamine	0.666	0.366	55.0	26.0-120	
Phenanthrene	0.666	0.457	68.6	42.0-120	
Benzylbutyl phthalate	0.666	0.576	86.5	40.0-120	
Bis(2-ethylhexyl)phthalate	0.666	0.580	87.1	41.0-120	
Di-n-butyl phthalate	0.666	0.534	80.2	43.0-120	
Diethyl phthalate	0.666	0.510	76.6	43.0-120	
Dimethyl phthalate	0.666	0.483	72.5	43.0-120	
Di-n-octyl phthalate	0.666	0.586	88.0	40.0-120	
Pyrene	0.666	0.503	75.5	41.0-120	
1,2,4-Trichlorobenzene	0.666	0.369	55.4	17.0-120	
4-Chloro-3-methylphenol	0.666	0.353	53.0	28.0-120	
2-Chlorophenol	0.666	0.436	65.5	28.0-120	
2,4-Dichlorophenol	0.666	0.386	58.0	25.0-120	
2,4-Dimethylphenol	0.666	0.346	52.0	15.0-120	
4,6-Dinitro-2-methylphenol	0.666	0.553	83.0	16.0-120	
2,4-Dinitrophenol	0.666	0.486	73.0	10.0-120	
2-Nitrophenol	0.666	0.410	61.6	20.0-120	
4-Nitrophenol	0.666	0.518	77.8	27.0-120	
Pentachlorophenol	0.666	0.533	80.0	29.0-120	
Phenol	0.666	0.392	58.9	28.0-120	
i licitor	0.000	0.002	50.5	20.0 120	

Тс Ss Cn Sr Qc GI Â Sc

ACCOUNT: SCS Engineers - KS

0.666

0.486

73.0

45.0

2,4,6-Trichlorophenol

(S) Nitrobenzene-d5

PROJECT: C4-052-73682

37.0-120

10.0-122

SDG: L1264151 DATE/TIME: 09/30/20 13:24

PAGE: 91 of 98

QUALITY CONTROL SUMMARY

Ср

Sr

ິQc

GI

Â

Sc

Laboratory Control Sample (LCS)

(LCS) R3575695-1 09/29/20 08:10

(200) 1007 0000 1 007 20	20 00.10					_ L
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	E
Analyte	mg/kg	mg/kg	%	%		
(S) 2-Fluorobiphenyl			67.6	15.0-120		
(S) p-Terphenyl-d14			79.6	10.0-120		1
(S) Phenol-d5			63.7	10.0-120		L
(S) 2-Fluorophenol			74.5	12.0-120		4
(S) 2,4,6-Tribromophenol			90.1	10.0-127		

L1264151-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1264151-02 09/29/20 16:33 • (MS) R3575695-3 09/29/20 16:54 • (MSD) R3575695-4 09/29/20 17:15

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Acenaphthene	0.806	0.274	1.05	1.45	96.8	146	2	18.0-120		<u>J5</u>	31.7	32	
Acenaphthylene	0.806	ND	0.546	0.453	67.7	56.2	2	25.0-120			18.6	32	
Anthracene	0.806	0.133	0.779	1.08	80.2	118	2	22.0-120		<u>J3</u>	32.5	29	
Benzidine	1.61	ND	ND	ND	10.3	10.5	2	10.0-120			1.48	40	
Benzo(a)anthracene	0.806	0.133	1.06	1.53	115	173	2	25.0-120		<u>J3 J5</u>	35.9	29	
Benzo(b)fluoranthene	0.806	0.148	1.06	1.51	113	169	2	19.0-122		<u>J3 J5</u>	35.5	31	
Benzo(k)fluoranthene	0.806	ND	0.774	0.918	90.4	108	2	23.0-120			17.0	30	
Benzo(g,h,i)perylene	0.806	ND	0.800	0.930	90.6	107	2	10.0-120			15.1	33	
Benzo(a)pyrene	0.806	0.108	1.03	1.43	114	164	2	24.0-120		<u>J3 J5</u>	32.7	30	
Bis(2-chlorethoxy)methane	0.806	ND	ND	ND	51.1	45.7	2	10.0-120			11.1	34	
Bis(2-chloroethyl)ether	0.806	ND	ND	ND	48.9	43.8	2	10.0-120			10.9	40	
2,2-Oxybis(1-Chloropropane)	0.806	ND	ND	ND	53.5	47.8	2	10.0-120			11.2	40	
4-Bromophenyl-phenylether	0.806	ND	ND	ND	74.5	62.5	2	27.0-120			17.5	30	
2-Chloronaphthalene	0.806	ND	0.505	0.429	62.6	53.2	2	20.0-120			16.2	32	
4-Chlorophenyl-phenylether	0.806	ND	ND	ND	75.4	59.1	2	24.0-120			24.3	29	
Chrysene	0.806	0.141	0.988	1.43	105	159	2	21.0-120		<u>J3 J5</u>	36.4	29	
Dibenz(a,h)anthracene	0.806	ND	0.624	0.591	77.4	73.2	2	10.0-120			5.52	32	
3,3-Dichlorobenzidine	1.61	ND	1.20	0.940	74.3	58.3	2	10.0-120			24.1	34	
2,4-Dinitrotoluene	0.806	ND	ND	ND	90.5	79.8	2	30.0-120			12.5	31	
2,6-Dinitrotoluene	0.806	ND	ND	ND	78.2	66.3	2	25.0-120			16.4	31	
Fluoranthene	0.806	0.401	1.54	2.77	141	293	2	18.0-126	<u>J5</u>	<u>J3 J5</u>	57.1	32	
Fluorene	0.806	0.243	0.955	1.23	88.3	122	2	25.0-120		<u>J5</u>	24.8	30	
Hexachlorobenzene	0.806	ND	ND	ND	72.8	60.2	2	27.0-120			19.0	28	
Hexachloro-1,3-butadiene	0.806	ND	ND	ND	61.7	52.5	2	10.0-120			16.2	38	
Hexachlorocyclopentadiene	0.806	ND	ND	ND	0.000	0.000	2	10.0-120	<u>J6</u>	<u>J6</u>	0.000	40	
Hexachloroethane	0.806	ND	ND	ND	60.9	48.8	2	10.0-120			22.2	40	
Indeno(1,2,3-cd)pyrene	0.806	ND	0.870	1.01	98.6	117	2	10.0-120			15.4	32	
Isophorone	0.806	ND	ND	ND	51.7	46.3	2	13.0-120			11.0	34	
A	CCOUNT:			PRO	JECT:		SDG:			DATE/	TIME:		PAGE:
SCS E	Engineers - KS			C4-052	2-73682		L1	1264151		09/30/2	0 13:24		92 of 98

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

[°]Qc

GI

ΆI

Sc

L1264151-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1264151-02 09/29/20 16:33 • (MS) R3575695-3 09/29/20 16:54 • (MSD) R3575695-4 09/29/20 17:15

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	[
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Naphthalene	0.806	0.135	0.705	0.600	70.6	57.7	2	10.0-120			16.0	35	3
Nitrobenzene	0.806	ND	ND	ND	48.9	42.6	2	10.0-120			13.8	36	
n-Nitrosodimethylamine	0.806	ND	ND	ND	52.0	41.1	2	10.0-127			23.5	40	
n-Nitrosodiphenylamine	0.806	ND	ND	ND	75.5	64.0	2	17.0-120			16.5	29	4
n-Nitrosodi-n-propylamine	0.806	ND	ND	ND	51.2	45.8	2	10.0-120			11.1	37	L
Phenanthrene	0.806	0.581	1.45	2.48	108	236	2	17.0-120		<u>J3 J5</u>	52.4	31	5
Benzylbutyl phthalate	0.806	ND	ND	ND	93.1	76.3	2	23.0-120			19.8	30	
Bis(2-ethylhexyl)phthalate	0.806	ND	1.75	1.23	170	106	2	17.0-126	<u>J5</u>	<u>J3</u>	34.6	30	
Di-n-butyl phthalate	0.806	ND	ND	ND	83.1	68.8	2	30.0-120			18.8	29	6
Diethyl phthalate	0.806	ND	ND	ND	79.5	65.7	2	26.0-120			19.1	28	
Dimethyl phthalate	0.806	ND	ND	ND	73.8	61.5	2	25.0-120			18.2	29	7
Di-n-octyl phthalate	0.806	ND	ND	ND	102	83.4	2	21.0-123			19.8	29	
Pyrene	0.806	0.304	1.38	2.27	133	244	2	16.0-121	<u>J5</u>	<u>J3 J5</u>	49.0	32	
1,2,4-Trichlorobenzene	0.806	ND	ND	ND	55.2	47.7	2	12.0-120			14.6	37	8
4-Chloro-3-methylphenol	0.806	ND	ND	ND	66.9	55.7	2	15.0-120			18.3	30	
2-Chlorophenol	0.806	ND	ND	ND	59.2	52.3	2	15.0-120			12.4	37	ç
2,4-Dichlorophenol	0.806	ND	ND	ND	62.9	54.2	2	20.0-120			15.0	31	
2,4-Dimethylphenol	0.806	ND	ND	ND	58.6	50.5	2	10.0-120			15.0	33	L
4,6-Dinitro-2-methylphenol	0.806	ND	ND	ND	36.0	32.0	2	10.0-120			11.8	39	
2,4-Dinitrophenol	0.806	ND	ND	ND	0.000	0.000	2	10.0-121	<u>J6</u>	<u>J6</u>	0.000	40	
2-Nitrophenol	0.806	ND	ND	ND	58.5	51.5	2	12.0-120			12.6	39	
4-Nitrophenol	0.806	ND	ND	ND	88.6	70.6	2	10.0-137			22.6	32	
Pentachlorophenol	0.806	ND	ND	ND	78.0	64.6	2	10.0-160			18.8	31	
Phenol	0.806	ND	ND	ND	54.0	47.2	2	12.0-120			13.4	38	
2,4,6-Trichlorophenol	0.806	ND	ND	ND	75.2	62.9	2	19.0-120			17.8	32	
(S) Nitrobenzene-d5					52.6	42.5		10.0-122					
(S) 2-Fluorobiphenyl					60.6	42.5		15.0-120					
(S) p-Terphenyl-d14					78.8	51.4		10.0-120					
(S) Phenol-d5					57.0	42.4		10.0-120					
(S) 2-Fluorophenol					62.2	46.4		12.0-120					
(S) 2,4,6-Tribromophenol					88.0	59.2		10.0-127					

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1264151 DATE/TIME: 09/30/20 13:24

PAGE: 93 of 98

GLOSSARY OF TERMS

₩

Τс

Ss

Cn

Sr

*Q*c

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
JO	J0: The identification of the analyte is acceptable, but the reported concentration is an estimate. The calibration met method criteria.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
SCS Engineers - KS	C4-052-73682	L1264151	09/30/20 13:24	94 of 98

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey-NELAP
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina ³
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio–VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ¹⁴
Louisiana 1	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

C4-052-73682

L1264151

PAGE: 95 of 98

09/30/20 13:24

Τс Ss Cn Sr Qc Gl AI Sc

			Billing Infor	mation:				1	1 A	nalvsis /	/ Contai	ner / Preservative	T	Chain of Custody	Page of								
SCS Engineers - KS 8575 W. 110th Street			Accounts 8575 W. Overland	Pres Chk			2	1				- Pace	Analytical*										
Overland Park, KS 66210					I			1	82700	a				6									
Report to: Doug Dreiling			Email To: do	dreiling@scsengin	19				*	and y	Syr	l/Syr		12065 Lebanon Rd Mount Juliet, TN 37 Phone: 615-758-58	1122 58								
Project Description: Former City Garage Operations		City/State Collected:	E.		Please Ci PT MT C	1111			1	In		2 S		Phone: 800-767-58 Fax: 615-758-5859									
Phone: 913-681-0030	Client Project			tab Project # AQUAOPKS-0	40527368	2	loPres	res	4ozCir-NoPres	-NoPre	40mlAmb/MeOH5ml	VeOH15m			LUHISI A074								
Collected by (print): Jeff Janzan	Site/Facility 27220109		an a	P.O. #			4ozAmb-NoPres	2ozClr-NoPres	A come of the state of the state	SVOCs, Pesticides 4ozClr-NoPres	Amb/N	40mlAmb/M		Acctnum: AQ	Acctnum: AQUAOPKS								
ollected by (signature):	Rush?	(Lab MUST Be Day Five		Quote #			TS 402		Pest/PCBs	icides	40ml			Template: T17 Prelogin: P79	7673								
Immediately Packed on Ice N Y	Next I	ay 10 Da	(Rad Only) y (Rad Only)	Date Result	s Needed	llo. of	MRH/HRH,	Metals		s, Pest	- 8260	S - LRH		PM: 206 - Jeff Carr PB:									
Sample ID	Comp/Grad	Matrix *	Depth	Date	Time	Cntrs	MRH,	RCRA	SVOCs,	VOC	VOC	NOC	SVOC	SVOC	svoc	SVOC	1003	100	VOCS	VPHKS		Shipped Via: Remarks	Sample # (lab only
PB-1 2'-4'	6	SS	2-4'	9/17/20	1634	5	x	X	X		X	x			-01								
PB-1 9.5'-11'		SS	9.5-11.5	9/17/20	1652	5	X	X	x	1	X	X			-02								
PB-2 1'-3'		SS	1:3'	9/17/20	1435	5	X	X	x		X	X			-03								
PB-2 12'-14'	19 B	SS	12'-14'	9/17/20	1520	5	X	X	X		X	X			-04								
PB-9 2'-4'		SS	2'-4'	9/17/20	1306	5	X	X	X	12.22	X	X			-05								
PB-9 9'-11'		SS	9'-11'	9/17/20	1332	5	X	X	X		X	X			-06								
PB-3 1.5'-3.5'		SS	1.5'-3.5		0939	5	X	X	X	100	X	X			-07								
PB-3 9'-11'		SS	9'-11'	9/18/20	0957	5	x	X	X	4.6	X	X		14 1 M C	-08								
Soil Due		SS	-	9/17/20		5	X	X	X	1000	X	X		1-4	-09								
Field Blank	N	SSG	-	9/18/20	0939	13/2	X	X	x		X	X		e toge	-10								
* Matrix: ss - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Samples returne	ibes F ibes F in PB-2	List -	- A / SO / hor pB- 1.5- Trackin	12, 515	1 - PB	2.6- -99. 2-4' 112	Dimi -11', 1	12010 103 1.3	Flow	e.	Temp Other	COC Sea COC Sig Bottles Correct	Cample Receipt Ch Present/Intact ned/Accurate: arrive intact: bottles used: ent volume sent: If Applicab									
Relinquished by : (Signature)		Date: 9 //8 /20	Time:		ed by: (Signat	(Ure)	9-18	30	1.6	Trip Blar	nk Recei	ved: Yesy No HCL / MeoH	Preserv	o Headspace: ation Correct/Che een <0.5 mR/hr:	_2/_1								
Relinquisted by : (Signature)	-	Date:	Time:		ed by: (Signat	ture)	-	100		Hable 1	13 .	TBR C Bottles Received	If preserv	ation required by Log	gin: Date/Time								
Relinquished by : (Signature)		Date:	Time:	Receiv	ed for lab by: Day	E Fil			Contract of the second second	Date; 9-19	920	Time:	Hold:		Condition: NCF / OK								

			Billing Infor	mation:		1		1	A	nalysis /	Contair	ner / Pro	eservative		Chain of Custody	Page of										
SCS Engineers - KS						Pres Chk									Pace	_ Pace Analytical*										
75 W. 110th Street Jand Park, KS 66210			Overland	Park, KS 662															2700						Netional C	anter for Testing & Innovat
por t to: Dreiling		3	Email To: do	dreiling@scsengi			-2/2011		No.		Syr	l/Syr			12065 Lebanon Rd Mount Juliet, TN 3 Phone: 615-758-58	7122 58										
oje et Description. on er City Garage Operations		City/State Collected:			Please Ci PT MT C					S	imi	LSml			Phone: 800-767-58 Fax: 615-758-5859	DK1875										
one:913-681-0030	Client Project			Lab Project # AQUAOPKS-	C40527368	2	TS 4o2Amb-NoPres	Pres	4ozCir-NoPres	r-NoPre	MeOH	40mlAmb/MeOH15m			SDG #LIZ	64131										
Setf Suram	Site/Facility 27220109			P.O. #	P.O. #										zAmb-I	Clr-Nol	s 4ozCl	4 ozCl	Amb/	Amb/I			Acctnum: AQ	Acctnum: AQUAOPKS		
Aller P 9	Same Next D Two D	Rush? (Lab MUST Be Notified) Same Day Five Day Next Day 5 Day (Rad Only) Two Day 10 Day (Rad Only)			# re Results Needed			RCRA Metals 2o2Clr-NoPres	SVOCs, Pest/PCBs	SVOCs, Pesticides 4ozClr-NoPres	8260 40mlAmb/MeOH5ml	- LRH 40m			Prelogin: P79	Template: T174203 Prelogin: P797673 PM: 206 - Jeff Carr										
Sample ID	Comp/Grab	T	Depth	Date	Time	c f Cntrs	МКН/НКН,	SCRA N	VOCs,	svocs,	vocs -	VPHKS			Shipped Via: Remarks	Sample # (lab only										
Equip Black	5	854~	-	9/18/20	0957	130	X	X	X	0)	x	x				-11										
Equip Black Trip Black		_ss Gu	-		-	101	1	X		X	X	×				-12										
A A		SS		17.6		1-	×	×		X	X	X														
	1.	1.0.				1																				
1						 																				
				15 A		-		1000																		
		1																								
		1		1	101.01																					
www-WasteWater	Remarks: X SVOCS - Complete Full List. 2,-6, Dimitrotoluene.						Also report pH Temp Flow Other							Sample Receipt Checklist CO2 Seal Present/Intact: MP Y N COC Signed/Accurate: N Bottles arrive intact: N Correct bottles used: Y N												
DW - Drinking Water OT - Other Samples returned via UPSFedEx Date:		amples returned via: VPSFedExCourier				Tracking # 1845 4330					0 3113				nt volume sent: <u>If Applicab</u> Headspace: tion Correct/Ch											
		9/18/2		05 00	ved by: (Signat	son	9-10	8-20		Itip Blan	ξ	7	HCL / MeoH TBR	RAD Scre	en <0.5 mR/hr:	7										
Relinquished by : (Signature)	I	Date:	Time:	Recei	ved by: (Signat	ure)				ANP?	0-1	C Bott	es Received:	If preserva	ition required by Log	gin: Date/Time										
Relinquished by : (Signature)	ľ	Date:	Tíme:	Recei	0 0			: (Signature)				Date: Time: 9-19-10 0.960				Condition: NCF / OK										

ANALYTICAL REPORT

October 05, 2020

SCS Engineers - KS

Sample Delivery Group:	L1268375
Samples Received:	09/19/2020
Project Number:	C4-052-73682
Description:	Former City Garage Operations
Site:	27220109.00
Report To:	Doug Dreiling
	8575 W. 110th Street
	Overland Park, KS 66210

Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

Entire Report Reviewed By:

Jubb land

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1268375 DATE/TIME: 10/05/20 13:24

PAGE: 1 of 14

TABLE OF CONTENTS

1 2

3

4

5

5

6

7

8

8

10

11

12

13

1	Ср
2	Тс

Οp
² Tc
³ Ss
⁴ Cn
⁵ Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

ACCOUNT:
SCS Engineers - KS

Cp: Cover Page

Tc: Table of Contents

Ss: Sample Summary Cn: Case Narrative

Sr: Sample Results

PB-2 12-14' L1268375-01

PB-9 9-11' L1268375-02

PB-3 9-11' L1268375-03

Qc: Quality Control Summary

Al: Accreditations & Locations

Sc: Sample Chain of Custody

GI: Glossary of Terms

Total Solids by Method 2540 G-2011

Polychlorinated Biphenyls (GC) by Method 8082 A

SDG: L1268375

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

			Collected by	Collected date/time	Received dat	e/time
PB-2 12-14' L1268375-01 Solid				09/17/20 15:20	09/19/20 09:	00
Nethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Fotal Solids by Method 2540 G-2011	WG1549365	1	09/27/20 03:16	09/27/20 03:40	JAV	Mt. Juliet, TN
Polychlorinated Biphenyls (GC) by Method 8082 A	WG1553658	1	10/04/20 10:35	10/04/20 21:11	MTJ	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	e/time
PB-9 9-11' L1268375-02 Solid				09/17/20 13:32	09/19/20 09:	00
Nethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Fotal Solids by Method 2540 G-2011	WG1549366	1	09/27/20 03:57	09/27/20 04:11	JAV	Mt. Juliet, TN
Total Solids by Method 2540 G-2011 Polychlorinated Biphenyls (GC) by Method 8082 A	WG1549366 WG1553658	1 1	09/27/20 03:57 10/04/20 10:35	09/27/20 04:11 10/04/20 21:22	JAV MTJ	
		1 1				Mt. Juliet, TN
		1 1	10/04/20 10:35	10/04/20 21:22	MTJ	Mt. Juliet, TN
Polychlorinated Biphenyls (GC) by Method 8082 A		1 1 Dilution	10/04/20 10:35	10/04/20 21:22 Collected date/time	MTJ Received dat	Mt. Juliet, TN
Polychlorinated Biphenyls (GC) by Method 8082 A PB-3 9-11' L1268375-03 Solid	WG1553658	1 1 Dilution	10/04/20 10:35 Collected by	10/04/20 21:22 Collected date/time 09/18/20 09:57	MTJ Received dat 09/19/20 09:	Mt. Juliet, TN re/time 00
Polychlorinated Biphenyls (GC) by Method 8082 A PB-3 9-11' L1268375-03 Solid	WG1553658	1 1 Dilution	10/04/20 10:35 Collected by Preparation	10/04/20 21:22 Collected date/time 09/18/20 09:57 Analysis	MTJ Received dat 09/19/20 09:	Mt. Juliet, TN e/time 00

SDG: L1268375

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

SDG: L1268375

PAGE: 4 of 14

SAMPLE RESULTS - 01 L1268375

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	82.8		1	09/27/2020 03:40	WG1549365	Tc

Polychlorinated Biphenyls (GC) by Method 8082 A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
PCB 1016	ND		0.0411	1	10/04/2020 21:11	WG1553658
PCB 1221	ND		0.0411	1	10/04/2020 21:11	WG1553658
PCB 1232	ND		0.0411	1	10/04/2020 21:11	WG1553658
PCB 1242	ND		0.0411	1	10/04/2020 21:11	WG1553658
PCB 1248	ND		0.0205	1	10/04/2020 21:11	WG1553658
PCB 1254	ND		0.0205	1	10/04/2020 21:11	WG1553658
PCB 1260	ND		0.0205	1	10/04/2020 21:11	WG1553658
(S) Decachlorobiphenyl	39.8		10.0-135		10/04/2020 21:11	WG1553658
(S) Tetrachloro-m-xylene	78.6		10.0-139		10/04/2020 21:11	WG1553658

SAMPLE RESULTS - 02 L1268375

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		_p
Analyte	%			date / time		2	_
Total Solids	84.5		1	09/27/2020 04:11	WG1549366	T	Ĉ

Polychlorinated Biphenyls (GC) by Method 8082 A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
PCB 1016	ND		0.0402	1	10/04/2020 21:22	WG1553658
PCB 1221	ND		0.0402	1	10/04/2020 21:22	WG1553658
PCB 1232	ND		0.0402	1	10/04/2020 21:22	WG1553658
PCB 1242	ND		0.0402	1	10/04/2020 21:22	WG1553658
PCB 1248	ND		0.0201	1	10/04/2020 21:22	WG1553658
PCB 1254	ND		0.0201	1	10/04/2020 21:22	WG1553658
PCB 1260	ND		0.0201	1	10/04/2020 21:22	WG1553658
(S) Decachlorobiphenyl	71.8		10.0-135		10/04/2020 21:22	WG1553658
(S) Tetrachloro-m-xylene	68.0		10.0-139		10/04/2020 21:22	WG1553658

SAMPLE RESULTS - 03 L1268375

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	82.1		1	09/27/2020 04:11	WG1549366	Tc

Polychlorinated Biphenyls (GC) by Method 8082 A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
yte	mg/kg		mg/kg		date / time		
1016	ND		0.0414	1	10/04/2020 21:32	WG1553658	
1221	ND		0.0414	1	10/04/2020 21:32	WG1553658	
1232	ND		0.0414	1	10/04/2020 21:32	WG1553658	
1242	ND		0.0414	1	10/04/2020 21:32	WG1553658	
1248	ND		0.0207	1	10/04/2020 21:32	WG1553658	
1254	ND		0.0207	1	10/04/2020 21:32	WG1553658	
1260	ND		0.0207	1	10/04/2020 21:32	WG1553658	
Decachlorobiphenyl	42.5		10.0-135		10/04/2020 21:32	WG1553658	
) Tetrachloro-m-xylene	73.0		10.0-139		10/04/2020 21:32	WG1553658	

WG1549365

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) R3575036-1 09/2	27/20 03:40			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1264151-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1264151-04 09/	/27/20 03:40 • (DU	P) R3575036-3	3 09/27/20	J 03:40		
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	82.8	82.5	1	0.343		10

Laboratory Control Sample (LCS)

(LCS) R3575036-2 09	/27/20 03:40				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	99.9	85.0-115	

SDG: L1268375 DATE/TIME: 10/05/20 13:24

WG1549366

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) R3575038-1 09/2	27/20 04:11			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1264151-08 Original Sample (OS) • Duplicate (DUP)

(OS) L1264151-08 09/27/2	OS) L1264151-08 09/27/20 04:11 • (DUP) R3575038-3 09/27/20 04:11							
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte	%	%		%		%		
Total Solids	82.1	81.7	1	0.522		10		

Laboratory Control Sample (LCS)

(LCS) R3575038-2 09	LCS) R3575038-2 09/27/20 04:11								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	%	%	%	%					
Total Solids	50.0	50.0	100	85.0-115					

ACCOUNT:
SCS Engineers - KS

PROJECT: C4-052-73682 SDG: L1268375 DATE/TIME: 10/05/20 13:24

PAGE: 9 of 14 Polychlorinated Biphenyls (GC) by Method 8082 A

QUALITY CONTROL SUMMARY

(MB) R3577820-1 10/04/2	MB) R3577820-1 10/04/20 18:36							
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
PCB 1016	U		0.0118	0.0340				
PCB 1221	U		0.0118	0.0340				
PCB 1232	U		0.0118	0.0340				
PCB 1242	U		0.0118	0.0340				
PCB 1248	U		0.00738	0.0170				
PCB 1254	U		0.00738	0.0170				
PCB 1260	U		0.00738	0.0170				
(S) Decachlorobiphenyl	72.1			10.0-135				
(S) Tetrachloro-m-xylene	78.7			10.0-139				

Laboratory Control Sample (LCS)

(LCS) R3577820-2 10/04/20 18:46										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
PCB 1260	0.167	0.171	102	37.0-145						
PCB 1016	0.167	0.159	95.2	36.0-141						
(S) Decachlorobiphenyl			74.0	10.0-135						
(S) Tetrachloro-m-xylene			77.2	10.0-139						

L1268157-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1268157-02 10/04/20 19:07 • (MS) R3577820-3 10/04/20 19:18 • (MSD) R3577820-4 10/04/20 19:28 Spike Amount Original Result MSD Result MSD Result MSD Rec. Dilution Rec. Limits MSD Qualifier MSD Qualifier RPD RPD Limits (dry) (dry) (dry) (dry) MSD Rec. Dilution Rec. Limits MSD Qualifier RPD RPD Limits												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
PCB 1260	0.179	ND	0.163	0.176	91.0	98.2	1	10.0-160			7.59	38
PCB 1016	0.179	ND	0.163	0.178	91.0	99.4	1	10.0-160			8.81	37
(S) Decachlorobiphenyl					69.4	76.0		10.0-135				
(S) Tetrachloro-m-xylene					77.6	82.1		10.0-139				

DATE/TIME: 10/05/20 13:24

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

PROJECT: C4-052-73682 SDG: L1268375 DATE/TIME: 10/05/20 13:24

PAGE: 11 of 14

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebra
Alaska	17-026	Nebras
Arizona	AZ0612	New H
Arkansas	88-0469	New Je
California	2932	New M
Colorado	TN00003	New Ye
Connecticut	PH-0197	North (
Florida	E87487	North (
Georgia	NELAP	North (
Georgia ¹	923	North I
Idaho	TN00003	Ohio-V
Illinois	200008	Oklaho
Indiana	C-TN-01	Oregor
lowa	364	Pennsy
Kansas	E-10277	Rhode
Kentucky ¹⁶	90010	South
Kentucky ²	16	South I
Louisiana	AI30792	Tennes
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas
Maryland	324	Utah
Massachusetts	M-TN003	Vermo
Michigan	9958	Virginia
Minnesota	047-999-395	Washir
Mississippi	TN00003	West V
Missouri	340	Wiscor
Montana	CERT0086	Wyomi

lehraska	NE-OS-15-05
Vevada	TN-03-2002-34
New Hampshire	2975
	Z975 TN002
New Jersey–NELAP	
	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

C4-052-73682

L1268375

PAGE: 12 of 14

10/05/20 13:24

	Billing Infor			lling Information:				Analysis / Container / Preservative Chain of Custody								
CS Engineers - KS			Accounts Payable 8575 W. 110th Street											Pacer	Analytical*	
75 W. 110th Street verland Park, KS 66210				Overland Park, KS 66210					22700	-04				Antibular Ca	nher for herding it innovation	
portis: oug Dreiling	-	Citu/State	Email To: ddreiling@scsengineers.com						*	0 *	Syr	I/Syr		12065 Lebenon Rd Mount Juliet, TN 37 Phone: 615-758-585 Phone: 800-767-585		
sject Description: orm er City Garage Operations		Collected:			PT MT C				es	es	Sml	15n		Fex: 615-758-5859		
one:913-681-0030	Client Project C4-052-73			Lab Project # AQUAOPKS-C	40527368	2	4ozAmb-NoPres	2o2Clr-NoPres	s 4ozClr-NoPres	Pesticides 4ozClr-NoPres	40mlAmb/MeOH5ml/Syr	40mlAmb/MeOH15m		SDG # 61264151 Tables A074		
illected by (print): Jeff Janzan	Site/Facility II 27220109.			P.O. #			zAmb-I					IAmb/		Acctnum: AQU Template:T17	4074 L126837 JAOPKS	
ollected by (signature):		Lab MUST Be		Quote #				202	PCB	ide	40m	40m		Prelogin: P79	CONTRACTOR OF STREET	
AN I G mmediately acked on Ice N Y	Same Day Five Day Next Day S Day (Rad Only) Two Day 30 Day (Rad Only) Three Day			Date Results Needed			HRH, TS	Metals	s, Pest/PCBs	s, Pesti	3260	S - LRH		PM: 206 - Jeff (PB: Shipped Via:	Carr	
Sample ID	Comp/Greo	Matrix *	Depth	Date	Time	Contra	MRH/HRH,	RCRA	svocs,	svocs,	vocs	VPHKS		Remarks	Sample # (lab only)	
PB-1 2'-4'	16	SS	2-4'	9/11/20	1634	5	X	X	X	25.973)	X	X			=0+	
PB-1 9.5'-11'	T	SS	9.5-11.5	9/17/20	1652	5	X	X	X	16.	X	X			-02	
PB-2 1'-3'		SS	1-3'	9/17/20	1435	5	X	X	x		X	X	3		-03	
PB-2 12'-14'		SS	12'+4'	9/17/20	1520	5	X	X	X	1	X	X	1. 1. 1. 1	and a set	-04 -	
PB-9 2'-4'		SS	2'-4'	9/17/20	1306	5	X	x	X		X	X			=05	
PB-1 9'-11'		SS	9'-11'	9/17/20	1332	5	X	X	X		X	X			-de	
PB-3 15-3.5'		SS	1.5-3.5		0939	5	X	X	X		X	X			-07	
PB-3 9'-11'		SS	9'-11'	9/18/20	0957	5	X	X	X	1	X	X				
Soil Due		SS	-	9/17/2	10	5	X	X	X		X	X			-09	
Field Blank	N	-556	u	9/18/20	0939	3	X	X	X		X	X			=10	
* Matrixi SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	emarks: 34 54 CB3 - 04 Samples returns UPS _ Fed	ed via:		16-3 1.5	Report -19.5-11 -3.5', t ing# (8	1, PI	2.6- 8-99 12-4 43		P63 1	S-3.5 Flor	×	Temp Other	COC Seal COC Sign Bottles Correct Sufficie VOA Zero	ample Receipt C Present/Intact ed/Accurate: arrive intact: bottles used: int volume sent: <u>If Applicat</u> Headspace:		
Relinquished by : (Signature)	the state of the s	Date:	Tim	es Refael	ved by: (Sign	ature)	9-1	18-20	2	Trip Bla	ink Reco	ived: (Yes) No	RAD Scre	tion Correct/Ch en <0.5 mR/hr:	tecked: K N	
Allo an 1		and the second		605 Jan		ature)	<u> </u>	160	6	Auto	43	TBR C Bottles Received	and the second	ation required by Lo	ogin: Date/Time	
	Çe				and for lab 1	100	atural	- And	-1.5	Date:	1-2-	-12 // Time:	Hold:		Condition	
Relinquished by : (Signature)		Date:	Tim	Rece	ived for lab b	y; pign				Date: Time: 9.19.20 09.20					NCF / OK	

ALC: N

- Cados

ANALYTICAL REPORT

October 05, 2020

SCS Engineers - KS

Sample Delivery Group:	L1265359
Samples Received:	09/23/2020
Project Number:	C4-052-73682
Description:	Former City Garage Operations
Site:	27220109.00
Report To:	Doug Dreiling
	8575 W. 110th Street
	Overland Park, KS 66210

²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

Entire Report Reviewed By:

Jubb law

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1265359 DATE/TIME: 10/05/20 12:26

PAGE: 1 of 86

TABLE OF CONTENTS

1 2

*	
¹ Cp	
² Tc	
³ Ss	
⁴ Cn	
⁵ Sr	
⁶ Qc	
⁷ Gl	
⁸ Al	

Sc

	—
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
PB-1A L1265359-01	7
PB-2 L1265359-02	11
PB-3 L1265359-03	15
PB-5 L1265359-04	19
PB-6 L1265359-05	22
PB-8 L1265359-06	25
PB-10 L1265359-07	28
PB-4 L1265359-08	31
PB-7 L1265359-09	34
PB-9 L1265359-10	37
PB-11 L1265359-11	40
TRIP BLANK 1 L1265359-12	43
TRIP BLANK 2 L1265359-13	45
DUP L1265359-14	47
FIELD BLANK L1265359-15	51
Qc: Quality Control Summary	55
Mercury by Method 7470A	55
Metals (ICP) by Method 6010D	56
Volatile Organic Compounds (GC/MS) by Method 8260D	57
Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	66
Pesticides (GC) by Method 8081B	67
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	69
GI: Glossary of Terms	80
Al: Accreditations & Locations	81
Sc: Sample Chain of Custody	82

Cp: Cover Page

Tc: Table of Contents

SDG: L1265359 DATE/TIME: 10/05/20 12:26

Ср

Тс

Ss

Ċn

Sr

Qc

GI

ΆI

Sc

	SAMPLE S	SAMPLE SUMMARY					
PB-1A L1265359-01 GW			Collected by	Collected date/time 09/21/20 15:05	Received da		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Mercury by Method 7470A	WG1548373	1	09/24/20 08:51	09/24/20 21:48	TCT	Mt. Juliet, TN	
Metals (ICP) by Method 6010D	WG1549460	1	09/29/20 10:14	09/30/20 08:43	TRB	Mt. Juliet, TN	
/olatile Organic Compounds (GC/MS) by Method 8260D	WG1551743	1	09/30/20 19:18	09/30/20 19:18	ADM	Mt. Juliet, TN	
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1552323	10	10/01/20 18:47	10/01/20 18:47	BMB	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	WG1547615	1	10/02/20 07:15	10/05/20 02:12	DMG	Mt. Juliet, TN	
Pesticides (GC) by Method 8081B	WG1549659	1.05	09/28/20 08:16	09/29/20 10:01	LEL	Mt. Juliet, TN	
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1548770	5	09/28/20 10:29	09/30/20 17:42	AAT	Mt. Juliet, TN	
PB-2 L1265359-02 GW			Collected by	Collected date/time 09/21/20 15:30	Received da 09/23/20 09		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1551743	1	09/30/20 19:38	09/30/20 19:38	ADM	Mt. Juliet, TN	
/olatile Organic Compounds (GC/MS) by Method 8260D	WG1552323	1	10/01/20 17:21	10/01/20 17:21	BMB	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	WG1547615	1	10/02/20 07:15	10/03/20 05:45	JDG	Mt. Juliet, TN	
Pesticides (GC) by Method 8081B	WG1549659	1.05	09/28/20 08:16	09/29/20 10:16	LEL	Mt. Juliet, TN	
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1548770	1.18	09/28/20 10:29	09/30/20 08:17	AAT	Mt. Juliet, TN	
PB-3 L1265359-03 GW			Collected by	Collected date/time 09/21/20 12:45	Received da 09/23/20 09		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Mercury by Method 7470A	WG1548373	1	09/24/20 08:51	09/24/20 21:50	TCT	Mt. Juliet, TN	
Ietals (ICP) by Method 6010D	WG1549460	1	09/29/20 10:14	09/30/20 08:46	TRB	Mt. Juliet, TN	
/olatile Organic Compounds (GC/MS) by Method 8260D	WG1551743	1	09/30/20 19:57	09/30/20 19:57	ADM	Mt. Juliet, TN	
olatile Organic Compounds (GC/MS) by Method 8260D	WG1552323	1	10/01/20 17:42	10/01/20 17:42	BMB	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	WG1547615	1	10/02/20 07:15	10/05/20 01:26	DMG	Mt. Juliet, TN	
Pesticides (GC) by Method 8081B	WG1549659	1	09/28/20 08:16	09/29/20 10:30	LEL	Mt. Juliet, TN	
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1548770	1	09/28/20 10:29	09/30/20 08:37	AAT	Mt. Juliet, TN	
PB-5 L1265359-04 GW			Collected by	Collected date/time 09/21/20 10:10	Received da		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Vercury by Method 7470A	WG1548373	1	09/24/20 08:51	09/24/20 21:52	TCT	Mt. Juliet, TN	
Metals (ICP) by Method 6010D	WG1549460	1	09/29/20 10:14	09/30/20 08:49	TRB	Mt. Juliet, TN	
/olatile Organic Compounds (GC/MS) by Method 8260D	WG1551743	1	09/30/20 20:16	09/30/20 20:16	ADM	Mt. Juliet, TN	
/olatile Organic Compounds (GC/MS) by Method 8260D	WG1552323	1	10/01/20 18:04	10/01/20 18:04	BMB	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	WG1547615	1.11	10/02/20 07:15	10/03/20 11:27	JDG	Mt. Juliet, TN	
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1548770	1	09/28/20 10:29	09/30/20 08:58	AAT	Mt. Juliet, TN	
PB-6 L1265359-05 GW			Collected by	Collected date/time 09/21/20 12:18	Received da 09/23/20 09		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Vercury by Method 7470A	WG1548373	1	09/24/20 08:51	09/24/20 21:54	TCT	Mt. Juliet, TN	
Metals (ICP) by Method 6010D	WG1549460	1	09/29/20 10:14	09/30/20 08:52	TRB	Mt. Juliet, TN	
/olatile Organic Compounds (GC/MS) by Method 8260D	WG1551743	1	09/30/20 20:36	09/30/20 20:36	ADM	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	WG1547615	1.03	10/02/20 07:15	10/03/20 11:50	JDG	Mt. Juliet, TN	
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1548770	1	09/28/20 10:29	09/30/20 09:19	AAT	Mt. Juliet, TN	
ΔΟΟΟΙΝΤΟ	PRO IECT.		SDG		F/TIME		

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1265359 DATE/TIME: 10/05/20 12:26

PAGE:

3 of 86

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

PB-8 L1265359-06 GW			Collected by	Collected date/time 09/21/20 13:35	Received date/time 09/23/20 09:00		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Mercury by Method 7470A	WG1548373	1	09/24/20 08:51	09/24/20 21:56	TCT	Mt. Juliet, TN	
Metals (ICP) by Method 6010D	WG1549460	1	09/29/20 10:14	09/30/20 07:35	TRB	Mt. Juliet, TN	
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1551743	1	09/30/20 20:55	09/30/20 20:55	ADM	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	WG1547615	1.03	10/02/20 07:15	10/03/20 12:13	JDG	Mt. Juliet, TN	
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1548770	1	09/28/20 10:29	09/30/20 10:22	AAT	Mt. Juliet, TN	
PB-10 L1265359-07 GW			Collected by	Collected date/time 09/21/20 11:42	Received da 09/23/20 09		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
weatou	Daten	Dilution	date/time	date/time	Analyst	Location	
Mercury by Method 7470A	WG1548373	1	09/24/20 08:51	09/24/20 21:58	ТСТ	Mt. Juliet, TN	
Metals (ICP) by Method 6010D	WG1549460	1	09/29/20 10:14	09/30/20 07:38	TRB	Mt. Juliet, TN	
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1551743	1	09/30/20 21:15	09/30/20 21:15	ADM	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	WG1547615	1.03	10/02/20 07:15	10/03/20 12:36	JDG	Mt. Juliet, TN	
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1548770	1	09/28/20 10:29	09/30/20 09:40	AAT	Mt. Juliet, TN	
PB-4 L1265359-08 GW			Collected by	Collected date/time 09/21/20 10:35	Received da 09/23/20 09		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Velatile Organic Compounds (CC/MC) by Mothed 2260D	WC1EE1742	1	09/30/20 21:34			Mt Juliat TN	
/olatile Organic Compounds (GC/MS) by Method 8260D Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	WG1551743 WG1547615	1 1.05	10/02/20 07:15	09/30/20 21:34 10/03/20 12:59	ADM JDG	Mt. Juliet, TN Mt. Juliet, TN	
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1547015 WG1548770	1.05	09/28/20 10:29	09/30/20 10:01	AAT	Mt. Juliet, TN	
		·	00/20/20 10:20	00/00/20 10:01	,	int. Suilet, In	
PB-7 L1265359-09 GW			Collected by	Collected date/time 09/21/20 13:09	Received da 09/23/20 09		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
incurou incurou incuro in	Bateri	Dilution	date/time	date/time	Analyst	Election	
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1551743	1	09/30/20 21:54	09/30/20 21:54	ADM	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	WG1547615	1	10/02/20 07:15	10/03/20 13:22	JDG	Mt. Juliet, TN	
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1548770	1	09/28/20 10:29	09/30/20 11:04	AAT	Mt. Juliet, TN	
PB-9 L1265359-10 GW			Collected by	Collected date/time 09/21/20 16:30	Received da 09/23/20 09		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time	,		
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1551743	50	09/30/20 22:52	09/30/20 22:52	ADM	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	WG1547615	71.5	10/02/20 07:15	10/05/20 02:35	DMG	Mt. Juliet, TN	
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1548770	20	09/28/20 10:29	09/30/20 18:03	AAT	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da		
PB-11 L1265359-11 GW				09/21/20 14:45	09/23/20 09	09/23/20 09:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1551743	1	09/30/20 22:13	09/30/20 22:13	ADM	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	WG1547615	1	10/02/20 07:15	10/03/20 13:44	JDG	Mt. Juliet, TN	
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1548770	1	09/28/20 10:29	09/30/20 11:25	AAT	Mt. Juliet, TN	

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1265359 DATE/TIME: 10/05/20 12:26

PAGE: 4 of 86

ONE LAB. NATIONWIDE.

y

Ср

Тс

Cn

Sr

Qc

Gl

Â

Sc

			Collected by	Collected date/time 09/21/20 00:00	Received da 09/23/20 09	
TRIP BLANK 1 L1265359-12 GW				03/21/20 00.00	03/23/20 03	.00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
/olatile Organic Compounds (GC/MS) by Method 8260D	WG1551766	1	10/01/20 00:48	10/01/20 00:48	DWR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TRIP BLANK 2 L1265359-13 GW				09/21/20 00:00	09/23/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1551766	1	10/01/20 01:07	10/01/20 01:07	DWR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUP L1265359-14 GW				09/21/20 12:45	09/23/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Mercury by Method 7470A	WG1548373	1	09/24/20 08:51	09/24/20 22:02	TCT	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1549460	1	09/29/20 10:14	09/30/20 07:41	TRB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260D	WG1551743	1	09/30/20 18:39	09/30/20 18:39	ADM	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260D	WG1552323	10	10/01/20 18:26	10/01/20 18:26	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH	WG1547615	1	10/02/20 07:15	10/05/20 01:49	DMG	Mt. Juliet, TN
Pesticides (GC) by Method 8081B	WG1549659	1	09/28/20 08:16	09/29/20 10:45	LEL	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG1548770	1	09/28/20 10:29	09/30/20 10:43	AAT	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FIELD BLANK L1265359-15 GW				09/21/20 12:45	09/23/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Mercury by Method 7470A	WG1548373	1	09/24/20 08:51	09/24/20 22:08	TCT	Mt. Juliet, TN
Metals (ICP) by Method 6010D Volatile Organic Compounds (GC/MS) by Method 8260D	WG1549460	1	09/29/20 10:14	09/30/20 07:44	TRB ADM	Mt. Juliet, TN Mt. Juliet, TN

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRHWG1547615Pesticides (GC) by Method 8081BWG1549659Semi Volatile Organic Compounds (GC/MS) by Method 8270CWG1549309

SDG: L1265359

10/02/20 07:15

09/28/20 08:16

09/27/20 08:30

1

1

1

10/03/20 14:30

09/29/20 11:00

09/27/20 17:59

JDG

LEL

AAT

Mt. Juliet, TN

Mt. Juliet, TN

Mt. Juliet, TN

DATE/TIME: 10/05/20 12:26

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ubb land

Jeff Carr Project Manager

Sample Delivery Group (SDG) Narrative

pH outside of	method	requirement
---------------	--------	-------------

Lab Sample ID	Project Sample ID	Method
L1265359-01	PB-1A	8260D
L1265359-02	<u>PB-2</u>	8260D
L1265359-04	PB-5	8260D

¹ Cp
² Tc
³ Ss
⁴ Cn
⁵ Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

Collected date/time: 09/21/20 15:05

SAMPLE RESULTS - 01

Ср

Тс

Ss

Cn

Qc

Gl

Â

Sc

Mercury by Method 7470A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Mercury	ND		0.200	1	09/24/2020 21:48	WG1548373

Metals (ICP) by Method 6010D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Arsenic	ND		10.0	1	09/30/2020 08:43	WG1549460	
Barium	779		5.00	1	09/30/2020 08:43	WG1549460	
Cadmium	ND		2.00	1	09/30/2020 08:43	WG1549460	
Chromium	ND		10.0	1	09/30/2020 08:43	WG1549460	
Lead	ND		6.00	1	09/30/2020 08:43	WG1549460	
Selenium	ND		10.0	1	09/30/2020 08:43	WG1549460	
Silver	ND		5.00	1	09/30/2020 08:43	WG1549460	

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
LRH (C5-C8)	1410		100	1	09/30/2020 19:18	WG1551743
Acetone	ND		50.0	1	09/30/2020 19:18	<u>WG1551743</u>
Acrylonitrile	ND	JO	10.0	1	09/30/2020 19:18	WG1551743
Benzene	591		10.0	10	10/01/2020 18:47	<u>WG1552323</u>
Bromobenzene	ND		1.00	1	09/30/2020 19:18	WG1551743
Bromodichloromethane	ND		1.00	1	09/30/2020 19:18	<u>WG1551743</u>
Bromoform	ND		1.00	1	09/30/2020 19:18	WG1551743
Bromomethane	ND		5.00	1	09/30/2020 19:18	<u>WG1551743</u>
n-Butylbenzene	10.1		1.00	1	09/30/2020 19:18	WG1551743
sec-Butylbenzene	8.53		1.00	1	09/30/2020 19:18	WG1551743
tert-Butylbenzene	ND		1.00	1	09/30/2020 19:18	WG1551743
Carbon tetrachloride	ND		1.00	1	09/30/2020 19:18	WG1551743
Chlorobenzene	ND		1.00	1	09/30/2020 19:18	WG1551743
Chlorodibromomethane	ND		1.00	1	09/30/2020 19:18	WG1551743
Chloroethane	ND		5.00	1	09/30/2020 19:18	WG1551743
Chloroform	ND		5.00	1	09/30/2020 19:18	WG1551743
Chloromethane	ND		2.50	1	09/30/2020 19:18	WG1551743
2-Chlorotoluene	ND		1.00	1	09/30/2020 19:18	WG1551743
4-Chlorotoluene	ND		1.00	1	09/30/2020 19:18	WG1551743
1,2-Dibromo-3-Chloropropane	ND		5.00	1	09/30/2020 19:18	WG1551743
1,2-Dibromoethane	ND		1.00	1	09/30/2020 19:18	WG1551743
Dibromomethane	ND		1.00	1	09/30/2020 19:18	WG1551743
1,2-Dichlorobenzene	ND		1.00	1	09/30/2020 19:18	WG1551743
1,3-Dichlorobenzene	ND		1.00	1	09/30/2020 19:18	WG1551743
1,4-Dichlorobenzene	ND		1.00	1	09/30/2020 19:18	WG1551743
Dichlorodifluoromethane	ND		5.00	1	09/30/2020 19:18	WG1551743
1,1-Dichloroethane	ND		1.00	1	09/30/2020 19:18	WG1551743
1,2-Dichloroethane	ND		1.00	1	09/30/2020 19:18	WG1551743
1,1-Dichloroethene	ND		1.00	1	09/30/2020 19:18	WG1551743
cis-1,2-Dichloroethene	ND		1.00	1	09/30/2020 19:18	WG1551743
trans-1,2-Dichloroethene	ND		1.00	1	09/30/2020 19:18	WG1551743
1,2-Dichloropropane	ND		1.00	1	09/30/2020 19:18	WG1551743
1,1-Dichloropropene	ND		1.00	1	09/30/2020 19:18	WG1551743
1,3-Dichloropropane	ND		1.00	1	09/30/2020 19:18	WG1551743
cis-1,3-Dichloropropene	ND		1.00	1	09/30/2020 19:18	WG1551743
trans-1,3-Dichloropropene	ND		1.00	1	09/30/2020 19:18	WG1551743
2,2-Dichloropropane	ND		1.00	1	09/30/2020 19:18	WG1551743
Di-isopropyl ether	ND		1.00	1	09/30/2020 19:18	WG1551743
Ethylbenzene	2.96		1.00	1	09/30/2020 19:18	WG1551743
ACCOUNT	:			PROJECT:	SDG	: DATE/TIME: PAG

SCS Engineers - KS

PROJECT: C4-052-73682 SDG: L1265359 DATE/TIME: 10/05/20 12:26

SAMPLE RESULTS - 01

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Hexachloro-1,3-butadiene	ND		1.00	1	09/30/2020 19:18	WG1551743	
sopropylbenzene	44.8		1.00	1	09/30/2020 19:18	WG1551743	
o-Isopropyltoluene	ND		1.00	1	09/30/2020 19:18	WG1551743	
2-Butanone (MEK)	ND		10.0	1	09/30/2020 19:18	WG1551743	
Nethylene Chloride	ND		5.00	1	09/30/2020 19:18	WG1551743	
-Methyl-2-pentanone (MIBK)	ND		10.0	1	09/30/2020 19:18	WG1551743	
lethyl tert-butyl ether	ND		1.00	1	09/30/2020 19:18	WG1551743	
laphthalene	164		5.00	1	09/30/2020 19:18	WG1551743	
-Propylbenzene	74.1		1.00	1	09/30/2020 19:18	WG1551743	
Styrene	ND		1.00	1	09/30/2020 19:18	WG1551743	
,1,1,2-Tetrachloroethane	ND		1.00	1	09/30/2020 19:18	WG1551743	
1,2,2-Tetrachloroethane	ND		1.00	1	09/30/2020 19:18	WG1551743	
1,2-Trichlorotrifluoroethane	ND		1.00	1	09/30/2020 19:18	WG1551743	
etrachloroethene	ND		1.00	1	09/30/2020 19:18	WG1551743	
oluene	5.34		1.00	1	09/30/2020 19:18	WG1551743	
,2,3-Trichlorobenzene	ND		1.00	1	09/30/2020 19:18	WG1551743	
2,4-Trichlorobenzene	ND		1.00	1	09/30/2020 19:18	WG1551743	
1,1-Trichloroethane	ND		1.00	1	09/30/2020 19:18	WG1551743	
1,2-Trichloroethane	ND		1.00	1	09/30/2020 19:18	WG1551743	
richloroethene	ND		1.00	1	09/30/2020 19:18	WG1551743	
richlorofluoromethane	ND		5.00	1	09/30/2020 19:18	WG1551743	
,2,3-Trichloropropane	ND		2.50	1	09/30/2020 19:18	WG1551743	
,2,4-Trimethylbenzene	2.16		1.00	1	09/30/2020 19:18	WG1551743	
,2,3-Trimethylbenzene	4.71		1.00	1	09/30/2020 19:18	WG1551743	
,3,5-Trimethylbenzene	ND		1.00	1	09/30/2020 19:18	WG1551743	
/inyl chloride	ND		1.00	1	09/30/2020 19:18	WG1551743	
Kylenes, Total	17.6		3.00	1	09/30/2020 19:18	WG1551743	
(S) Toluene-d8	102		80.0-120		09/30/2020 19:18	WG1551743	
(S) Toluene-d8	105		80.0-120		10/01/2020 18:47	WG1552323	
(S) 4-Bromofluorobenzene	94.4		77.0-126		09/30/2020 19:18	WG1551743	
(S) 4-Bromofluorobenzene	91.1		77.0-126		10/01/2020 18:47	WG1552323	
(S) 1,2-Dichloroethane-d4	95.0		70.0-130		09/30/2020 19:18	WG1551743	
(S) 1,2-Dichloroethane-d4	112		70.0-130		10/01/2020 18:47	WG1552323	

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
MRH (C9-C18)	1850		100	1	10/05/2020 02:12	WG1547615
HRH (C19-C35)	440		100	1	10/05/2020 02:12	WG1547615
(S) 1-Chloro-octadecane	104		40.0-140		10/05/2020 02:12	WG1547615

Pesticides (GC) by Method 8081B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Aldrin	ND		0.0525	1.05	09/29/2020 10:01	WG1549659
Alpha BHC	ND		0.0525	1.05	09/29/2020 10:01	WG1549659
Beta BHC	ND		0.0525	1.05	09/29/2020 10:01	WG1549659
Delta BHC	ND		0.0525	1.05	09/29/2020 10:01	<u>WG1549659</u>
Gamma BHC	ND		0.0525	1.05	09/29/2020 10:01	WG1549659
Chlordane	ND		5.25	1.05	09/29/2020 10:01	<u>WG1549659</u>
4,4-DDD	ND		0.0525	1.05	09/29/2020 10:01	WG1549659
4,4-DDE	ND		0.0525	1.05	09/29/2020 10:01	<u>WG1549659</u>
4,4-DDT	ND		0.0525	1.05	09/29/2020 10:01	WG1549659
Dieldrin	ND		0.0525	1.05	09/29/2020 10:01	WG1549659
Endosulfan I	ND		0.0525	1.05	09/29/2020 10:01	WG1549659

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1265359 DATE/TIME: 10/05/20 12:26 PAGE: 8 of 86 Analyte

Endrin

Endosulfan II

Endosulfan sulfate

Endrin aldehyde

Hexachlorobenzene

Heptachlor epoxide

(S) Decachlorobiphenyl

(S) Tetrachloro-m-xylene

Endrin ketone

Heptachlor

Methoxychlor

Toxaphene

SAMPLE RESULTS - 01

Analysis

date / time

09/29/2020 10:01

09/29/2020 10:01

09/29/2020 10:01

09/29/2020 10:01

09/29/2020 10:01

09/29/2020 10:01

09/29/2020 10:01

09/29/2020 10:01

09/29/2020 10:01

09/29/2020 10:01

09/29/2020 10:01

09/29/2020 10:01

Batch

WG1549659

WG1549659

WG1549659

WG1549659

WG1549659

WG1549659

WG1549659

WG1549659

WG1549659

WG1549659 WG1549659

WG1549659

Dilution

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

1.05

Ср

²Tc ³Ss ⁴Cn ⁵Sr

Sr Qc Gl

ΆI

Sc

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

Result

ug/l

ND

43.7

60.5

SCS Engineers - KS

Qualifier

RDL

ug/l

0.0525

0.0525

0.0525

0.0525

0.0525

0.0525

0.0525

0.0525

0.0525

0.525

10.0-128

10.0-127

	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l		date / time			
Acenaphthene	ND		5.00	5	09/30/2020 17:42	WG1548770		
Acenaphthylene	ND		5.00	5	09/30/2020 17:42	WG1548770		
Anthracene	ND		5.00	5	09/30/2020 17:42	WG1548770		
Benzidine	ND		50.0	5	09/30/2020 17:42	WG1548770		
Benzo(a)anthracene	ND		5.00	5	09/30/2020 17:42	WG1548770		
Benzo(b)fluoranthene	ND		5.00	5	09/30/2020 17:42	WG1548770		
Benzo(k)fluoranthene	ND		5.00	5	09/30/2020 17:42	WG1548770		
Benzo(g,h,i)perylene	ND		5.00	5	09/30/2020 17:42	WG1548770		
Benzo(a)pyrene	ND		5.00	5	09/30/2020 17:42	WG1548770		
Bis(2-chlorethoxy)methane	ND		50.0	5	09/30/2020 17:42	WG1548770		
Bis(2-chloroethyl)ether	ND		50.0	5	09/30/2020 17:42	WG1548770		
2,2-Oxybis(1-Chloropropane)	ND		50.0	5	09/30/2020 17:42	WG1548770		
4-Bromophenyl-phenylether	ND		50.0	5	09/30/2020 17:42	WG1548770		
2-Chloronaphthalene	ND		5.00	5	09/30/2020 17:42	WG1548770		
4-Chlorophenyl-phenylether	ND		50.0	5	09/30/2020 17:42	WG1548770		
Chrysene	ND		5.00	5	09/30/2020 17:42	WG1548770		
Dibenz(a,h)anthracene	ND		5.00	5	09/30/2020 17:42	WG1548770		
,2-Dichlorobenzene	ND		50.0	5	09/30/2020 17:42	WG1548770		
,3-Dichlorobenzene	ND		50.0	5	09/30/2020 17:42	WG1548770		
4-Dichlorobenzene	ND		50.0	5	09/30/2020 17:42	WG1548770		
3,3-Dichlorobenzidine	ND		50.0	5	09/30/2020 17:42	WG1548770		
2,4-Dinitrotoluene	ND		50.0	5	09/30/2020 17:42	WG1548770		
2,6-Dinitrotoluene	ND		50.0	5	09/30/2020 17:42	WG1548770		
luoranthene	ND		5.00	5	09/30/2020 17:42	WG1548770		
luorene	ND		5.00	5	09/30/2020 17:42	WG1548770		
Hexachlorobenzene	ND		5.00	5	09/30/2020 17:42	WG1548770		
Hexachloro-1,3-butadiene	ND		50.0	5	09/30/2020 17:42	WG1548770		
lexachlorocyclopentadiene	ND		50.0	5	09/30/2020 17:42	WG1548770		
lexachloroethane	ND		50.0	5	09/30/2020 17:42	WG1548770		
ndeno(1,2,3-cd)pyrene	ND		5.00	5	09/30/2020 17:42	WG1548770		
sophorone	ND		50.0	5	09/30/2020 17:42	WG1548770		
laphthalene	72.3		5.00	5	09/30/2020 17:42	WG1548770		
litrobenzene	ND		50.0	5	09/30/2020 17:42	WG1548770		
-Nitrosodimethylamine	ND		50.0	5	09/30/2020 17:42	WG1548770		
-Nitrosodiphenylamine	ND		50.0	5	09/30/2020 17:42	WG1548770		
-Nitrosodi-n-propylamine	ND		50.0	5	09/30/2020 17:42	WG1548770		
henanthrene	ND		5.00	5	09/30/2020 17:42	WG1548770		
Benzylbutyl phthalate	ND		15.0	5	09/30/2020 17:42	WG1548770		
Bis(2-ethylhexyl)phthalate	ND		15.0	5	09/30/2020 17:42	WG1548770		
Di-n-butyl phthalate	ND		15.0	5	09/30/2020 17:42	WG1548770		
ACCOUN	11:		PR	OJECT:	SDG:		DATE/TIME:	PAG

C4-052-73682

L1265359

PAGE: 9 of 86 Collected date/time: 09/21/20 15:05

SAMPLE RESULTS - 01

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	C
Analyte	ug/l		ug/l		date / time		
Diethyl phthalate	ND		15.0	5	09/30/2020 17:42	<u>WG1548770</u>	^{2}T
Dimethyl phthalate	ND		15.0	5	09/30/2020 17:42	<u>WG1548770</u>	
Di-n-octyl phthalate	ND		15.0	5	09/30/2020 17:42	<u>WG1548770</u>	3
Pyrene	ND		5.00	5	09/30/2020 17:42	<u>WG1548770</u>	°S
1,2,4-Trichlorobenzene	ND		50.0	5	09/30/2020 17:42	<u>WG1548770</u>	
4-Chloro-3-methylphenol	ND		50.0	5	09/30/2020 17:42	<u>WG1548770</u>	⁴ C
2-Chlorophenol	ND		50.0	5	09/30/2020 17:42	<u>WG1548770</u>	
2,4-Dichlorophenol	ND		50.0	5	09/30/2020 17:42	<u>WG1548770</u>	5
2,4-Dimethylphenol	ND		50.0	5	09/30/2020 17:42	WG1548770	⁵ S
4,6-Dinitro-2-methylphenol	ND		50.0	5	09/30/2020 17:42	WG1548770	
2,4-Dinitrophenol	ND		50.0	5	09/30/2020 17:42	<u>WG1548770</u>	⁶ C
2-Nitrophenol	ND		50.0	5	09/30/2020 17:42	WG1548770	
4-Nitrophenol	ND		50.0	5	09/30/2020 17:42	WG1548770	7
Pentachlorophenol	ND		50.0	5	09/30/2020 17:42	<u>WG1548770</u>	0
Phenol	ND		50.0	5	09/30/2020 17:42	WG1548770	
2,4,6-Trichlorophenol	ND		50.0	5	09/30/2020 17:42	WG1548770	⁸ 4
(S) 2-Fluorophenol	27.6		10.0-120		09/30/2020 17:42	WG1548770	Ĺ
(S) Phenol-d5	17.6		10.0-120		09/30/2020 17:42	WG1548770	9
(S) Nitrobenzene-d5	50.4		10.0-127		09/30/2020 17:42	WG1548770	95
(S) 2-Fluorobiphenyl	57.7		10.0-130		09/30/2020 17:42	WG1548770	
(S) 2,4,6-Tribromophenol	52.6		10.0-155		09/30/2020 17:42	WG1548770	
(S) p-Terphenyl-d14	58.6		10.0-128		09/30/2020 17:42	WG1548770	
						-	

Sample Narrative:

L1265359-01 WG1548770: Dilution due to matrix.

SAMPLE RESULTS - 02 L1265359

y

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
LRH (C5-C8)	ND		100	1	09/30/2020 19:38	WG1551743	ŤΤ
Acetone	ND		50.0	1	09/30/2020 19:38	WG1551743	
Acrylonitrile	ND	JO	10.0	1	09/30/2020 19:38	WG1551743	³ S
Benzene	ND		1.00	1	10/01/2020 17:21	WG1552323	
Bromobenzene	ND		1.00	1	09/30/2020 19:38	WG1551743	4
Bromodichloromethane	ND		1.00	1	09/30/2020 19:38	WG1551743	Ť
Bromoform	ND		1.00	1	09/30/2020 19:38	WG1551743	
Bromomethane	ND		5.00	1	09/30/2020 19:38	WG1551743	55
n-Butylbenzene	ND		1.00	1	09/30/2020 19:38	WG1551743	5
sec-Butylbenzene	ND		1.00	1	09/30/2020 19:38	WG1551743	
tert-Butylbenzene	ND		1.00	1	09/30/2020 19:38	WG1551743	⁶ C
Carbon tetrachloride	ND		1.00	1	09/30/2020 19:38	WG1551743	
Chlorobenzene	ND		1.00	1	09/30/2020 19:38		7
	ND		1.00	1	09/30/2020 19:38	WG1551743	Í 🤆
Chlorodibromomethane						WG1551743	
Chloroethane	ND		5.00	1	09/30/2020 19:38	WG1551743	8
Chloroform	ND		5.00	1	09/30/2020 19:38	WG1551743	A
Chloromethane	ND		2.50	1	09/30/2020 19:38	WG1551743	
2-Chlorotoluene	ND		1.00	1	09/30/2020 19:38	WG1551743	°S
4-Chlorotoluene	ND		1.00	1	09/30/2020 19:38	<u>WG1551743</u>	
1,2-Dibromo-3-Chloropropane	ND		5.00	1	09/30/2020 19:38	<u>WG1551743</u>	
1,2-Dibromoethane	ND		1.00	1	09/30/2020 19:38	WG1551743	
Dibromomethane	ND		1.00	1	09/30/2020 19:38	WG1551743	
1,2-Dichlorobenzene	ND		1.00	1	09/30/2020 19:38	WG1551743	
1,3-Dichlorobenzene	ND		1.00	1	09/30/2020 19:38	WG1551743	
1,4-Dichlorobenzene	ND		1.00	1	09/30/2020 19:38	WG1551743	
Dichlorodifluoromethane	ND		5.00	1	09/30/2020 19:38	WG1551743	
1,1-Dichloroethane	ND		1.00	1	09/30/2020 19:38	WG1551743	
1,2-Dichloroethane	ND		1.00	1	09/30/2020 19:38	WG1551743	
1,1-Dichloroethene	ND		1.00	1	09/30/2020 19:38	WG1551743	
cis-1,2-Dichloroethene	ND		1.00	1	09/30/2020 19:38	WG1551743	
trans-1,2-Dichloroethene	ND		1.00	1	09/30/2020 19:38	WG1551743	
1,2-Dichloropropane	ND		1.00	1	09/30/2020 19:38	WG1551743	
1,1-Dichloropropene	ND		1.00	1	09/30/2020 19:38	WG1551743	
1,3-Dichloropropane	ND		1.00	1	09/30/2020 19:38	WG1551743	
	ND		1.00	1	09/30/2020 19:38	W61551743	
cis-1,3-Dichloropropene	ND		1.00	1			
trans-1,3-Dichloropropene				1	09/30/2020 19:38	WG1551743	
2,2-Dichloropropane	ND		1.00	1	09/30/2020 19:38	WG1551743	
Di-isopropyl ether	ND		1.00	1	09/30/2020 19:38	WG1551743	
Ethylbenzene	ND		1.00	1	09/30/2020 19:38	<u>WG1551743</u>	
Hexachloro-1,3-butadiene	ND		1.00	1	09/30/2020 19:38	<u>WG1551743</u>	
lsopropylbenzene	ND		1.00	1	09/30/2020 19:38	<u>WG1551743</u>	
p-Isopropyltoluene	1.18		1.00	1	09/30/2020 19:38	WG1551743	
2-Butanone (MEK)	ND		10.0	1	09/30/2020 19:38	WG1551743	
Methylene Chloride	ND		5.00	1	09/30/2020 19:38	WG1551743	
4-Methyl-2-pentanone (MIBK)	ND		10.0	1	09/30/2020 19:38	WG1551743	
Methyl tert-butyl ether	ND		1.00	1	09/30/2020 19:38	WG1551743	
Naphthalene	ND		5.00	1	09/30/2020 19:38	WG1551743	
n-Propylbenzene	ND		1.00	1	09/30/2020 19:38	WG1551743	
Styrene	ND		1.00	1	09/30/2020 19:38	WG1551743	
I,1,1,2-Tetrachloroethane	ND		1.00	1	09/30/2020 19:38	WG1551743	
1,1,2,2-Tetrachloroethane	ND		1.00	1	09/30/2020 19:38	WG1551743	
I,1,2-Trichlorotrifluoroethane	ND		1.00	1	09/30/2020 19:38	WG1551743	
Tetrachloroethene	ND		1.00	1	09/30/2020 19:38	WG1551743	
Toluene	ND		1.00	1	09/30/2020 19:38	WG1551743	
1,2,3-Trichlorobenzene			1.00	1			
	ND ND		1.00		09/30/2020 19:38	WG1551743	
1,2,4-Trichlorobenzene			1.00	1	09/30/2020 19:38	WG1551743	

SCS Engineers - KS

PROJECT: C4-052-73682

L1265359

DATE/TIME: 10/05/20 12:26 PAGE: 11 of 86

SAMPLE RESULTS - 02

Sc

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		l
1,1,1-Trichloroethane	ND		1.00	1	09/30/2020 19:38	WG1551743	
1,1,2-Trichloroethane	ND		1.00	1	09/30/2020 19:38	WG1551743	
Trichloroethene	ND		1.00	1	09/30/2020 19:38	WG1551743	
Trichlorofluoromethane	ND		5.00	1	09/30/2020 19:38	WG1551743	
1,2,3-Trichloropropane	ND		2.50	1	09/30/2020 19:38	WG1551743	
1,2,4-Trimethylbenzene	ND		1.00	1	09/30/2020 19:38	WG1551743	
1,2,3-Trimethylbenzene	ND		1.00	1	09/30/2020 19:38	WG1551743	
1,3,5-Trimethylbenzene	ND		1.00	1	09/30/2020 19:38	WG1551743	
Vinyl chloride	ND		1.00	1	09/30/2020 19:38	WG1551743	
Xylenes, Total	ND		3.00	1	09/30/2020 19:38	WG1551743	
(S) Toluene-d8	107		80.0-120		09/30/2020 19:38	WG1551743	
(S) Toluene-d8	102		80.0-120		10/01/2020 17:21	<u>WG1552323</u>	
(S) 4-Bromofluorobenzene	103		77.0-126		09/30/2020 19:38	WG1551743	
(S) 4-Bromofluorobenzene	90.6		77.0-126		10/01/2020 17:21	<u>WG1552323</u>	
(S) 1,2-Dichloroethane-d4	89.1		70.0-130		09/30/2020 19:38	WG1551743	l
(S) 1,2-Dichloroethane-d4	114		70.0-130		10/01/2020 17:21	WG1552323	

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
MRH (C9-C18)	122		100	1	10/03/2020 05:45	WG1547615
HRH (C19-C35)	ND		100	1	10/03/2020 05:45	WG1547615
(S) 1-Chloro-octadecane	85.1		40.0-140		10/03/2020 05:45	WG1547615

Pesticides (GC) by Method 8081B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Aldrin	ND		0.0525	1.05	09/29/2020 10:16	WG1549659
Alpha BHC	ND		0.0525	1.05	09/29/2020 10:16	WG1549659
Beta BHC	ND		0.0525	1.05	09/29/2020 10:16	WG1549659
Delta BHC	ND		0.0525	1.05	09/29/2020 10:16	WG1549659
Gamma BHC	ND		0.0525	1.05	09/29/2020 10:16	WG1549659
Chlordane	ND		5.25	1.05	09/29/2020 10:16	WG1549659
4,4-DDD	ND		0.0525	1.05	09/29/2020 10:16	WG1549659
4,4-DDE	ND		0.0525	1.05	09/29/2020 10:16	WG1549659
4,4-DDT	ND		0.0525	1.05	09/29/2020 10:16	WG1549659
Dieldrin	ND		0.0525	1.05	09/29/2020 10:16	WG1549659
Endosulfan I	ND		0.0525	1.05	09/29/2020 10:16	WG1549659
Endosulfan II	ND		0.0525	1.05	09/29/2020 10:16	WG1549659
Endosulfan sulfate	ND		0.0525	1.05	09/29/2020 10:16	WG1549659
Endrin	ND		0.0525	1.05	09/29/2020 10:16	WG1549659
Endrin aldehyde	ND		0.0525	1.05	09/29/2020 10:16	WG1549659
Endrin ketone	ND		0.0525	1.05	09/29/2020 10:16	WG1549659
Hexachlorobenzene	ND		0.0525	1.05	09/29/2020 10:16	WG1549659
Heptachlor	ND		0.0525	1.05	09/29/2020 10:16	WG1549659
Heptachlor epoxide	ND		0.0525	1.05	09/29/2020 10:16	WG1549659
Methoxychlor	ND		0.0525	1.05	09/29/2020 10:16	WG1549659
Toxaphene	ND		0.525	1.05	09/29/2020 10:16	WG1549659
(S) Decachlorobiphenyl	65.1		10.0-128		09/29/2020 10:16	WG1549659
(S) Tetrachloro-m-xylene	69.0		10.0-127		09/29/2020 10:16	<u>WG1549659</u>

PROJECT: C4-052-73682 SDG: L1265359 DATE/TIME: 10/05/20 12:26

SAMPLE RESULTS - 02

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier RDL	Dilution	Analysis	Batch	
Analyte	ug/l	ug/l		date / time		
cenaphthene	ND	1.18	1.18	09/30/2020 08:17	WG1548770	
cenaphthylene	ND	1.18	1.18	09/30/2020 08:17	WG1548770	
nthracene	ND	1.18	1.18	09/30/2020 08:17	WG1548770	[
Benzidine	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
lenzo(a)anthracene	ND	1.18	1.18	09/30/2020 08:17	WG1548770	L
Benzo(b)fluoranthene	ND	1.18	1.18	09/30/2020 08:17	WG1548770	
enzo(k)fluoranthene	ND	1.18	1.18	09/30/2020 08:17	WG1548770	
Benzo(g,h,i)perylene	ND	1.18	1.18	09/30/2020 08:17	<u>WG1548770</u>	
Benzo(a)pyrene	ND	1.18	1.18	09/30/2020 08:17	WG1548770	
Bis(2-chlorethoxy)methane	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
Bis(2-chloroethyl)ether	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
,2-Oxybis(1-Chloropropane)	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
-Bromophenyl-phenylether	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
-Chloronaphthalene	ND	1.18	1.18	09/30/2020 08:17	WG1548770	
-Chlorophenyl-phenylether	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
Chrysene	ND	1.18	1.18	09/30/2020 08:17	WG1548770	
vibenz(a,h)anthracene	ND	1.18	1.18	09/30/2020 08:17	WG1548770	
,2-Dichlorobenzene	ND	11.8	1.18	09/30/2020 08:17	WG1548770	, r
,3-Dichlorobenzene	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
4-Dichlorobenzene	ND	11.8	1.18	09/30/2020 08:17	WG1548770	L
,3-Dichlorobenzidine	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
,4-Dinitrotoluene	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
,6-Dinitrotoluene	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
luoranthene	ND	1.18	1.18	09/30/2020 08:17	WG1548770	
luorene	ND	1.18	1.18	09/30/2020 08:17	WG1548770	
lexachlorobenzene	ND	1.18	1.18	09/30/2020 08:17	WG1548770	
lexachloro-1,3-butadiene	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
lexachlorocyclopentadiene	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
lexachloroethane	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
ndeno(1,2,3-cd)pyrene	ND	1.18	1.18	09/30/2020 08:17	WG1548770	
sophorone	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
laphthalene	ND	1.18	1.18	09/30/2020 08:17	WG1548770	
litrobenzene	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
-Nitrosodimethylamine	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
•	ND			09/30/2020 08:17		
-Nitrosodiphenylamine -Nitrosodi-n-propylamine		11.8	1.18 1.18		WG1548770	
	ND ND	11.8 1.18		09/30/2020 08:17	WG1548770	
henanthrene	ND	3.54	1.18	09/30/2020 08:17	WG1548770	
enzylbutyl phthalate			1.18	09/30/2020 08:17	WG1548770	
lis(2-ethylhexyl)phthalate	ND	3.54	1.18	09/30/2020 08:17	WG1548770	
vi-n-butyl phthalate	ND	3.54	1.18	09/30/2020 08:17	WG1548770	
Viethyl phthalate	ND	3.54	1.18	09/30/2020 08:17	WG1548770	
imethyl phthalate	ND	3.54	1.18	09/30/2020 08:17	WG1548770	
ii-n-octyl phthalate	ND	3.54	1.18	09/30/2020 08:17	WG1548770	
yrene	ND	1.18	1.18	09/30/2020 08:17	WG1548770	
2,4-Trichlorobenzene	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
-Chloro-3-methylphenol	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
-Chlorophenol	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
,4-Dichlorophenol	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
,4-Dimethylphenol	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
,6-Dinitro-2-methylphenol	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
,4-Dinitrophenol	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
-Nitrophenol	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
-Nitrophenol	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
Pentachlorophenol	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
henol	ND	11.8	1.18	09/30/2020 08:17	WG1548770	
2,4,6-Trichlorophenol	ND	11.8	1.18	09/30/2020 08:17	<u>WG1548770</u>	

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1265359 DATE/TIME: 10/05/20 12:26

PAGE: 13 of 86 Collected date/time: 09/21/20 15:30

SAMPLE RESULTS - 02

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

							1
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		
(S) 2-Fluorophenol	52.8		10.0-120		09/30/2020 08:17	<u>WG1548770</u>	^{2}Tc
(S) Phenol-d5	33.4		10.0-120		09/30/2020 08:17	<u>WG1548770</u>	10
(S) Nitrobenzene-d5	77.1		10.0-127		09/30/2020 08:17	WG1548770	3
(S) 2-Fluorobiphenyl	88.1		10.0-130		09/30/2020 08:17	<u>WG1548770</u>	Ss
(S) 2,4,6-Tribromophenol	86.8		10.0-155		09/30/2020 08:17	WG1548770	
(S) p-Terphenyl-d14	88.1		10.0-128		09/30/2020 08:17	WG1548770	⁴ Cn

. Qc Gl Â Sc

DATE/TIME: 10/05/20 12:26

Collected date/time: 09/21/20 12:45

SAMPLE RESULTS - 03

Τс

Ss

Cn

Qc

Gl

Â

Sc

Mercury by Method 7470A

								1°C
		Result	Qualifier	RDL	Dilution	Analysis	Batch	
An	alyte	ug/l		ug/l		date / time		2
Me	rcury	ND		0.200	1	09/24/2020 21:50	WG1548373	T

Metals (ICP) by Method 6010D

	Result	Qualifier RD	L Dilutio	n Analysis	Batch	
Analyte	ug/l	ug	1	date / time		
Arsenic	ND	10.	0 1	09/30/2020 08:46	WG1549460	
Barium	722	5.0	0 1	09/30/2020 08:46	WG1549460	
Cadmium	ND	2.0	0 1	09/30/2020 08:46	WG1549460	
Chromium	ND	10.	0 1	09/30/2020 08:46	WG1549460	
Lead	ND	6.0	0 1	09/30/2020 08:46	WG1549460	
Selenium	ND	10.	0 1	09/30/2020 08:46	WG1549460	
Silver	ND	5.0	0 1	09/30/2020 08:46	WG1549460	

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
LRH (C5-C8)	ND		100	1	09/30/2020 19:57	WG1551743
Acetone	ND		50.0	1	09/30/2020 19:57	WG1551743
Acrylonitrile	ND	JO	10.0	1	09/30/2020 19:57	WG1551743
Benzene	ND		1.00	1	10/01/2020 17:42	<u>WG1552323</u>
Bromobenzene	ND		1.00	1	09/30/2020 19:57	WG1551743
Bromodichloromethane	ND		1.00	1	09/30/2020 19:57	WG1551743
Bromoform	ND		1.00	1	09/30/2020 19:57	WG1551743
Bromomethane	ND		5.00	1	09/30/2020 19:57	WG1551743
n-Butylbenzene	ND		1.00	1	09/30/2020 19:57	WG1551743
sec-Butylbenzene	ND		1.00	1	09/30/2020 19:57	WG1551743
tert-Butylbenzene	ND		1.00	1	09/30/2020 19:57	WG1551743
Carbon tetrachloride	ND		1.00	1	09/30/2020 19:57	WG1551743
Chlorobenzene	ND		1.00	1	09/30/2020 19:57	WG1551743
Chlorodibromomethane	ND		1.00	1	09/30/2020 19:57	WG1551743
Chloroethane	ND		5.00	1	09/30/2020 19:57	WG1551743
Chloroform	ND		5.00	1	09/30/2020 19:57	WG1551743
Chloromethane	ND		2.50	1	09/30/2020 19:57	WG1551743
2-Chlorotoluene	ND		1.00	1	09/30/2020 19:57	WG1551743
4-Chlorotoluene	ND		1.00	1	09/30/2020 19:57	WG1551743
1,2-Dibromo-3-Chloropropane	ND		5.00	1	09/30/2020 19:57	WG1551743
1,2-Dibromoethane	ND		1.00	1	09/30/2020 19:57	WG1551743
Dibromomethane	ND		1.00	1	09/30/2020 19:57	WG1551743
1,2-Dichlorobenzene	ND		1.00	1	09/30/2020 19:57	WG1551743
1,3-Dichlorobenzene	ND		1.00	1	09/30/2020 19:57	WG1551743
1,4-Dichlorobenzene	1.53		1.00	1	09/30/2020 19:57	WG1551743
Dichlorodifluoromethane	ND		5.00	1	09/30/2020 19:57	WG1551743
1,1-Dichloroethane	ND		1.00	1	09/30/2020 19:57	WG1551743
1,2-Dichloroethane	ND		1.00	1	09/30/2020 19:57	WG1551743
1,1-Dichloroethene	ND		1.00	1	09/30/2020 19:57	WG1551743
cis-1,2-Dichloroethene	ND		1.00	1	09/30/2020 19:57	WG1551743
trans-1,2-Dichloroethene	ND		1.00	1	09/30/2020 19:57	WG1551743
1,2-Dichloropropane	ND		1.00	1	09/30/2020 19:57	WG1551743
1,1-Dichloropropene	ND		1.00	1	09/30/2020 19:57	WG1551743
1,3-Dichloropropane	ND		1.00	1	09/30/2020 19:57	WG1551743
cis-1,3-Dichloropropene	ND		1.00	1	09/30/2020 19:57	WG1551743
trans-1,3-Dichloropropene	ND		1.00	1	09/30/2020 19:57	WG1551743
2,2-Dichloropropane	ND		1.00	1	09/30/2020 19:57	WG1551743
Di-isopropyl ether	ND		1.00	1	09/30/2020 19:57	WG1551743
Ethylbenzene	ND		1.00	1	09/30/2020 19:57	WG1551743
ACCOUNT:			F	PROJECT:	SDG:	DATE/TIME: PAG

SCS Engineers - KS

PROJECT: C4-052-73682 SDG: L1265359

.

PAGE: 15 of 86

SAMPLE RESULTS - 03

₩

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
nalyte	ug/l		ug/l		date / time	
lexachloro-1,3-butadiene	ND		1.00	1	09/30/2020 19:57	WG1551743
opropylbenzene	ND		1.00	1	09/30/2020 19:57	WG1551743
-Isopropyltoluene	ND		1.00	1	09/30/2020 19:57	WG1551743
-Butanone (MEK)	ND		10.0	1	09/30/2020 19:57	WG1551743
lethylene Chloride	ND		5.00	1	09/30/2020 19:57	WG1551743
-Methyl-2-pentanone (MIBK)	ND		10.0	1	09/30/2020 19:57	WG1551743
lethyl tert-butyl ether	ND		1.00	1	09/30/2020 19:57	WG1551743
laphthalene	ND		5.00	1	09/30/2020 19:57	WG1551743
-Propylbenzene	ND		1.00	1	09/30/2020 19:57	WG1551743
tyrene	ND		1.00	1	09/30/2020 19:57	WG1551743
1,1,2-Tetrachloroethane	ND		1.00	1	09/30/2020 19:57	WG1551743
1,2,2-Tetrachloroethane	ND		1.00	1	09/30/2020 19:57	WG1551743
1,2-Trichlorotrifluoroethane	ND		1.00	1	09/30/2020 19:57	WG1551743
etrachloroethene	ND		1.00	1	09/30/2020 19:57	WG1551743
oluene	ND		1.00	1	09/30/2020 19:57	WG1551743
2,3-Trichlorobenzene	ND		1.00	1	09/30/2020 19:57	WG1551743
2,4-Trichlorobenzene	ND		1.00	1	09/30/2020 19:57	WG1551743
1,1-Trichloroethane	ND		1.00	1	09/30/2020 19:57	WG1551743
1,2-Trichloroethane	ND		1.00	1	09/30/2020 19:57	WG1551743
richloroethene	ND		1.00	1	09/30/2020 19:57	WG1551743
richlorofluoromethane	ND		5.00	1	09/30/2020 19:57	WG1551743
2,3-Trichloropropane	ND		2.50	1	09/30/2020 19:57	WG1551743
2,4-Trimethylbenzene	ND		1.00	1	09/30/2020 19:57	WG1551743
2,3-Trimethylbenzene	ND		1.00	1	09/30/2020 19:57	WG1551743
3,5-Trimethylbenzene	ND		1.00	1	09/30/2020 19:57	WG1551743
inyl chloride	ND		1.00	1	09/30/2020 19:57	WG1551743
ylenes, Total	ND		3.00	1	09/30/2020 19:57	WG1551743
(S) Toluene-d8	107		80.0-120		09/30/2020 19:57	WG1551743
(S) Toluene-d8	107		80.0-120		10/01/2020 17:42	WG1552323
(S) 4-Bromofluorobenzene	108		77.0-126		09/30/2020 19:57	WG1551743
(S) 4-Bromofluorobenzene	90.9		77.0-126		10/01/2020 17:42	WG1552323
(S) 1,2-Dichloroethane-d4	97.2		70.0-130		09/30/2020 19:57	WG1551743
(S) 1,2-Dichloroethane-d4	113		70.0-130		10/01/2020 17:42	WG1552323

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
MRH (C9-C18)	249		100	1	10/05/2020 01:26	WG1547615
HRH (C19-C35)	140		100	1	10/05/2020 01:26	WG1547615
(S) 1-Chloro-octadecane	102		40.0-140		10/05/2020 01:26	WG1547615

Pesticides (GC) by Method 8081B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Aldrin	ND		0.0500	1	09/29/2020 10:30	WG1549659
Alpha BHC	ND		0.0500	1	09/29/2020 10:30	WG1549659
Beta BHC	ND		0.0500	1	09/29/2020 10:30	WG1549659
Delta BHC	ND		0.0500	1	09/29/2020 10:30	WG1549659
Gamma BHC	ND		0.0500	1	09/29/2020 10:30	WG1549659
Chlordane	ND		5.00	1	09/29/2020 10:30	WG1549659
4,4-DDD	ND	P	0.0500	1	09/29/2020 10:30	WG1549659
4,4-DDE	ND		0.0500	1	09/29/2020 10:30	WG1549659
4,4-DDT	ND		0.0500	1	09/29/2020 10:30	WG1549659
Dieldrin	ND		0.0500	1	09/29/2020 10:30	WG1549659
Endosulfan I	ND		0.0500	1	09/29/2020 10:30	WG1549659

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1265359

1

PAGE: 16 of 86 Analyte

Endrin

Endosulfan II

Endosulfan sulfate

Endrin aldehyde

Hexachlorobenzene

Heptachlor epoxide

(S) Decachlorobiphenyl

(S) Tetrachloro-m-xylene

Endrin ketone

Heptachlor

Methoxychlor

Toxaphene

SAMPLE RESULTS - 03

Analysis

date / time

09/29/2020 10:30

09/29/2020 10:30

09/29/2020 10:30

09/29/2020 10:30

09/29/2020 10:30

09/29/2020 10:30

09/29/2020 10:30

09/29/2020 10:30

09/29/2020 10:30

09/29/2020 10:30

09/29/2020 10:30

09/29/2020 10:30

Batch

WG1549659

WG1549659

WG1549659

WG1549659

WG1549659

WG1549659

WG1549659

WG1549659

WG1549659

WG1549659 WG1549659

WG1549659

Dilution

1

1

1

1

1

1

1

1

1

1

Ср

Тс

³Ss ⁴Cn ⁵Sr

Sr Qc

ΆI

Sc

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

Result

ug/l

ND

55.8

72.0

SCS Engineers - KS

Qualifier

RDL

ug/l

0.0500

0.0500

0.0500

0.0500

0.0500

0.0500

0.0500

0.0500

0.0500

0.500

10.0-128

10.0-127

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Acenaphthene	ND		1.00	1	09/30/2020 08:37	WG1548770	
Acenaphthylene	ND		1.00	1	09/30/2020 08:37	WG1548770	
Anthracene	ND		1.00	1	09/30/2020 08:37	WG1548770	
Benzidine	ND		10.0	1	09/30/2020 08:37	WG1548770	
Benzo(a)anthracene	ND		1.00	1	09/30/2020 08:37	WG1548770	
Benzo(b)fluoranthene	ND		1.00	1	09/30/2020 08:37	WG1548770	
Benzo(k)fluoranthene	ND		1.00	1	09/30/2020 08:37	WG1548770	
Benzo(g,h,i)perylene	ND		1.00	1	09/30/2020 08:37	WG1548770	
Benzo(a)pyrene	ND		1.00	1	09/30/2020 08:37	WG1548770	
Bis(2-chlorethoxy)methane	ND		10.0	1	09/30/2020 08:37	WG1548770	
Bis(2-chloroethyl)ether	ND		10.0	1	09/30/2020 08:37	WG1548770	
2,2-Oxybis(1-Chloropropane)	ND		10.0	1	09/30/2020 08:37	WG1548770	
4-Bromophenyl-phenylether	ND		10.0	1	09/30/2020 08:37	WG1548770	
2-Chloronaphthalene	ND		1.00	1	09/30/2020 08:37	WG1548770	
4-Chlorophenyl-phenylether	ND		10.0	1	09/30/2020 08:37	WG1548770	
Chrysene	ND		1.00	1	09/30/2020 08:37	WG1548770	
Dibenz(a,h)anthracene	ND		1.00	1	09/30/2020 08:37	WG1548770	
,2-Dichlorobenzene	ND		10.0	1	09/30/2020 08:37	WG1548770	
,3-Dichlorobenzene	ND		10.0	1	09/30/2020 08:37	WG1548770	
,4-Dichlorobenzene	ND		10.0	1	09/30/2020 08:37	WG1548770	
3,3-Dichlorobenzidine	ND		10.0	1	09/30/2020 08:37	WG1548770	
2,4-Dinitrotoluene	ND		10.0	1	09/30/2020 08:37	WG1548770	
2,6-Dinitrotoluene	ND		10.0	1	09/30/2020 08:37	WG1548770	
luoranthene	ND		1.00	1	09/30/2020 08:37	WG1548770	
luorene	ND		1.00	1	09/30/2020 08:37	WG1548770	
Hexachlorobenzene	ND		1.00	1	09/30/2020 08:37	WG1548770	
Hexachloro-1,3-butadiene	ND		10.0	1	09/30/2020 08:37	WG1548770	
Hexachlorocyclopentadiene	ND		10.0	1	09/30/2020 08:37	WG1548770	
Hexachloroethane	ND		10.0	1	09/30/2020 08:37	WG1548770	
ndeno(1,2,3-cd)pyrene	ND		1.00	1	09/30/2020 08:37	WG1548770	
sophorone	ND		10.0	1	09/30/2020 08:37	WG1548770	
laphthalene	2.80		1.00	1	09/30/2020 08:37	WG1548770	
litrobenzene	ND		10.0	1	09/30/2020 08:37	WG1548770	
n-Nitrosodimethylamine	ND		10.0	1	09/30/2020 08:37	WG1548770	
n-Nitrosodiphenylamine	ND		10.0	1	09/30/2020 08:37	WG1548770	
n-Nitrosodi-n-propylamine	ND		10.0	1	09/30/2020 08:37	WG1548770	
Phenanthrene	ND		1.00	1	09/30/2020 08:37	WG1548770	
Benzylbutyl phthalate	ND		3.00	1	09/30/2020 08:37	WG1548770	
Bis(2-ethylhexyl)phthalate	ND		3.00	1	09/30/2020 08:37	WG1548770	
Di-n-butyl phthalate	ND		3.00	1	09/30/2020 08:37	WG1548770	

C4-052-73682

L1265359

17 of 86

10/05/20 12:26

SAMPLE RESULTS - 03

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Diethyl phthalate	ND		3.00	1	09/30/2020 08:37	WG1548770	
Dimethyl phthalate	ND		3.00	1	09/30/2020 08:37	WG1548770	
Di-n-octyl phthalate	ND		3.00	1	09/30/2020 08:37	WG1548770	
Pyrene	ND		1.00	1	09/30/2020 08:37	WG1548770	
1,2,4-Trichlorobenzene	ND		10.0	1	09/30/2020 08:37	WG1548770	
4-Chloro-3-methylphenol	ND		10.0	1	09/30/2020 08:37	WG1548770	
2-Chlorophenol	ND		10.0	1	09/30/2020 08:37	WG1548770	
2,4-Dichlorophenol	ND		10.0	1	09/30/2020 08:37	WG1548770	
2,4-Dimethylphenol	ND		10.0	1	09/30/2020 08:37	WG1548770	
4,6-Dinitro-2-methylphenol	ND		10.0	1	09/30/2020 08:37	WG1548770	
2,4-Dinitrophenol	ND		10.0	1	09/30/2020 08:37	WG1548770	
2-Nitrophenol	ND		10.0	1	09/30/2020 08:37	WG1548770	
4-Nitrophenol	ND		10.0	1	09/30/2020 08:37	WG1548770	
Pentachlorophenol	ND		10.0	1	09/30/2020 08:37	WG1548770	
Phenol	ND		10.0	1	09/30/2020 08:37	WG1548770	
2,4,6-Trichlorophenol	ND		10.0	1	09/30/2020 08:37	WG1548770	
(S) 2-Fluorophenol	36.8		10.0-120		09/30/2020 08:37	WG1548770	
(S) Phenol-d5	22.4		10.0-120		09/30/2020 08:37	WG1548770	
(S) Nitrobenzene-d5	53.0		10.0-127		09/30/2020 08:37	WG1548770	
(S) 2-Fluorobiphenyl	60.1		10.0-130		09/30/2020 08:37	WG1548770	
(S) 2,4,6-Tribromophenol	64.0		10.0-155		09/30/2020 08:37	WG1548770	
(S) p-Terphenyl-d14	64.1		10.0-128		09/30/2020 08:37	WG1548770	

Тс

Ss

Cn

Qc

GI

Â

Sc

Mercury by Method 7470A

							 10
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Mercury	ND		0.200	1	09/24/2020 21:52	WG1548373	T

Metals (ICP) by Method 6010D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Arsenic	48.6		10.0	1	09/30/2020 08:49	WG1549460
Barium	536		5.00	1	09/30/2020 08:49	WG1549460
Cadmium	ND		2.00	1	09/30/2020 08:49	WG1549460
Chromium	ND		10.0	1	09/30/2020 08:49	WG1549460
Lead	ND		6.00	1	09/30/2020 08:49	WG1549460
Selenium	ND		10.0	1	09/30/2020 08:49	WG1549460
Silver	ND		5.00	1	09/30/2020 08:49	WG1549460

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
LRH (C5-C8)	ND		100	1	09/30/2020 20:16	WG1551743
Acetone	ND		50.0	1	09/30/2020 20:16	WG1551743
Acrylonitrile	ND	JO	10.0	1	09/30/2020 20:16	WG1551743
Benzene	ND		1.00	1	10/01/2020 18:04	<u>WG1552323</u>
Bromobenzene	ND		1.00	1	09/30/2020 20:16	WG1551743
Bromodichloromethane	ND		1.00	1	09/30/2020 20:16	WG1551743
Bromoform	ND		1.00	1	09/30/2020 20:16	WG1551743
Bromomethane	ND		5.00	1	09/30/2020 20:16	WG1551743
n-Butylbenzene	ND		1.00	1	09/30/2020 20:16	WG1551743
sec-Butylbenzene	ND		1.00	1	09/30/2020 20:16	WG1551743
tert-Butylbenzene	ND		1.00	1	09/30/2020 20:16	WG1551743
Carbon tetrachloride	ND		1.00	1	09/30/2020 20:16	WG1551743
Chlorobenzene	ND		1.00	1	09/30/2020 20:16	WG1551743
Chlorodibromomethane	ND		1.00	1	09/30/2020 20:16	WG1551743
Chloroethane	ND		5.00	1	09/30/2020 20:16	WG1551743
Chloroform	ND		5.00	1	09/30/2020 20:16	WG1551743
Chloromethane	ND		2.50	1	09/30/2020 20:16	WG1551743
2-Chlorotoluene	ND		1.00	1	09/30/2020 20:16	WG1551743
4-Chlorotoluene	ND		1.00	1	09/30/2020 20:16	WG1551743
1,2-Dibromo-3-Chloropropane	ND		5.00	1	09/30/2020 20:16	WG1551743
1,2-Dibromoethane	ND		1.00	1	09/30/2020 20:16	WG1551743
Dibromomethane	ND		1.00	1	09/30/2020 20:16	WG1551743
1,2-Dichlorobenzene	ND		1.00	1	09/30/2020 20:16	WG1551743
1,3-Dichlorobenzene	ND		1.00	1	09/30/2020 20:16	WG1551743
1,4-Dichlorobenzene	ND		1.00	1	09/30/2020 20:16	WG1551743
Dichlorodifluoromethane	ND		5.00	1	09/30/2020 20:16	WG1551743
1,1-Dichloroethane	ND		1.00	1	09/30/2020 20:16	WG1551743
1,2-Dichloroethane	ND		1.00	1	09/30/2020 20:16	WG1551743
1,1-Dichloroethene	ND		1.00	1	09/30/2020 20:16	WG1551743
cis-1,2-Dichloroethene	ND		1.00	1	09/30/2020 20:16	WG1551743
trans-1,2-Dichloroethene	ND		1.00	1	09/30/2020 20:16	WG1551743
1,2-Dichloropropane	ND		1.00	1	09/30/2020 20:16	WG1551743
1,1-Dichloropropene	ND		1.00	1	09/30/2020 20:16	WG1551743
1,3-Dichloropropane	ND		1.00	1	09/30/2020 20:16	WG1551743
cis-1,3-Dichloropropene	ND		1.00	1	09/30/2020 20:16	WG1551743
trans-1,3-Dichloropropene	ND		1.00	1	09/30/2020 20:16	WG1551743
2,2-Dichloropropane	ND		1.00	1	09/30/2020 20:16	WG1551743
Di-isopropyl ether	ND		1.00	1	09/30/2020 20:16	WG1551743
Ethylbenzene	ND		1.00	1	09/30/2020 20:16	WG1551743
ACCOUNT	:		Р	ROJECT:	SDG:	DATE/TIME: PAG

SCS Engineers - KS

PROJECT: C4-052-73682

L1265359

DATE/TIME: 10/05/20 12:26

₩

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Hexachloro-1,3-butadiene	ND		1.00	1	09/30/2020 20:16	WG1551743	
sopropylbenzene	ND		1.00	1	09/30/2020 20:16	WG1551743	
o-Isopropyltoluene	ND		1.00	1	09/30/2020 20:16	WG1551743	
2-Butanone (MEK)	ND		10.0	1	09/30/2020 20:16	WG1551743	
Methylene Chloride	ND		5.00	1	09/30/2020 20:16	WG1551743	
-Methyl-2-pentanone (MIBK)	ND		10.0	1	09/30/2020 20:16	WG1551743	
Nethyl tert-butyl ether	ND		1.00	1	09/30/2020 20:16	WG1551743	
laphthalene	ND		5.00	1	09/30/2020 20:16	WG1551743	
n-Propylbenzene	ND		1.00	1	09/30/2020 20:16	WG1551743	
Styrene	ND		1.00	1	09/30/2020 20:16	WG1551743	
,1,1,2-Tetrachloroethane	ND		1.00	1	09/30/2020 20:16	WG1551743	
,1,2,2-Tetrachloroethane	ND		1.00	1	09/30/2020 20:16	WG1551743	
,1,2-Trichlorotrifluoroethane	ND		1.00	1	09/30/2020 20:16	WG1551743	
etrachloroethene	ND		1.00	1	09/30/2020 20:16	WG1551743	
oluene	ND		1.00	1	09/30/2020 20:16	WG1551743	
,2,3-Trichlorobenzene	ND		1.00	1	09/30/2020 20:16	WG1551743	
,2,4-Trichlorobenzene	ND		1.00	1	09/30/2020 20:16	WG1551743	
,1,1-Trichloroethane	ND		1.00	1	09/30/2020 20:16	WG1551743	
,1,2-Trichloroethane	ND		1.00	1	09/30/2020 20:16	WG1551743	
richloroethene	ND		1.00	1	09/30/2020 20:16	WG1551743	
richlorofluoromethane	ND		5.00	1	09/30/2020 20:16	WG1551743	
,2,3-Trichloropropane	ND		2.50	1	09/30/2020 20:16	WG1551743	
,2,4-Trimethylbenzene	ND		1.00	1	09/30/2020 20:16	WG1551743	
,2,3-Trimethylbenzene	ND		1.00	1	09/30/2020 20:16	WG1551743	
,3,5-Trimethylbenzene	ND		1.00	1	09/30/2020 20:16	WG1551743	
/inyl chloride	ND		1.00	1	09/30/2020 20:16	WG1551743	
Kylenes, Total	ND		3.00	1	09/30/2020 20:16	WG1551743	
(S) Toluene-d8	108		80.0-120		09/30/2020 20:16	WG1551743	
(S) Toluene-d8	103		80.0-120		10/01/2020 18:04	WG1552323	
(S) 4-Bromofluorobenzene	105		77.0-126		09/30/2020 20:16	WG1551743	
(S) 4-Bromofluorobenzene	89.3		77.0-126		10/01/2020 18:04	WG1552323	
(S) 1,2-Dichloroethane-d4	98.6		70.0-130		09/30/2020 20:16	WG1551743	
1-/ / = = = = = = = = = = = = = = = = = =							

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
MRH (C9-C18)	ND		111	1.11	10/03/2020 11:27	WG1547615
HRH (C19-C35)	ND		111	1.11	10/03/2020 11:27	WG1547615
(S) 1-Chloro-octadecane	94.1		40.0-140		10/03/2020 11:27	WG1547615

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Acenaphthene	ND		1.00	1	09/30/2020 08:58	WG1548770
Acenaphthylene	ND		1.00	1	09/30/2020 08:58	WG1548770
Anthracene	ND		1.00	1	09/30/2020 08:58	WG1548770
Benzidine	ND		10.0	1	09/30/2020 08:58	WG1548770
Benzo(a)anthracene	ND		1.00	1	09/30/2020 08:58	WG1548770
Benzo(b)fluoranthene	ND		1.00	1	09/30/2020 08:58	WG1548770
Benzo(k)fluoranthene	ND		1.00	1	09/30/2020 08:58	WG1548770
Benzo(g,h,i)perylene	ND		1.00	1	09/30/2020 08:58	WG1548770
Benzo(a)pyrene	ND		1.00	1	09/30/2020 08:58	WG1548770
Bis(2-chlorethoxy)methane	ND		10.0	1	09/30/2020 08:58	WG1548770
Bis(2-chloroethyl)ether	ND		10.0	1	09/30/2020 08:58	<u>WG1548770</u>

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1265359 DATE/TIME: 10/05/20 12:26

PAGE: 20 of 86

Тс

Ss

Cn

Qc

Gl

Â

Sc

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier RDL	Dilution	Analysis	Batch	
Analyte	ug/l	ug/l		date / time		
2,2-Oxybis(1-Chloropropane)	ND	10.0	1	09/30/2020 08:58	WG1548770	2
4-Bromophenyl-phenylether	ND	10.0	1	09/30/2020 08:58	WG1548770	
2-Chloronaphthalene	ND	1.00	1	09/30/2020 08:58	WG1548770	
4-Chlorophenyl-phenylether	ND	10.0	1	09/30/2020 08:58	WG1548770	
Chrysene	ND	1.00	1	09/30/2020 08:58	WG1548770	
Dibenz(a,h)anthracene	ND	1.00	1	09/30/2020 08:58	WG1548770	2
1,2-Dichlorobenzene	ND	10.0	1	09/30/2020 08:58	WG1548770	
1,3-Dichlorobenzene	ND	10.0	1	09/30/2020 08:58	WG1548770	9
1,4-Dichlorobenzene	ND	10.0	1	09/30/2020 08:58	WG1548770	
3,3-Dichlorobenzidine	ND	10.0	1	09/30/2020 08:58	WG1548770	
2,4-Dinitrotoluene	ND	10.0	1	09/30/2020 08:58	WG1548770	(
2,6-Dinitrotoluene	ND	10.0	1	09/30/2020 08:58	WG1548770	
Fluoranthene	ND	1.00	1	09/30/2020 08:58	WG1548770	5
Fluorene	ND	1.00	1	09/30/2020 08:58	WG1548770	
Hexachlorobenzene	ND	1.00	1	09/30/2020 08:58	WG1548770	L
Hexachloro-1,3-butadiene	ND	10.0	1	09/30/2020 08:58	WG1548770	٤
Hexachlorocyclopentadiene	ND	10.0	1	09/30/2020 08:58	WG1548770	
Hexachloroethane	ND	10.0	1	09/30/2020 08:58	WG1548770	
Indeno(1,2,3-cd)pyrene	ND	1.00	1	09/30/2020 08:58	WG1548770	
Isophorone	ND	10.0	1	09/30/2020 08:58	WG1548770	L
Naphthalene	ND	1.00	1	09/30/2020 08:58	WG1548770	
Nitrobenzene	ND	10.0	1	09/30/2020 08:58	WG1548770	
n-Nitrosodimethylamine	ND	10.0	1	09/30/2020 08:58	WG1548770	
n-Nitrosodiphenylamine	ND	10.0	1	09/30/2020 08:58	WG1548770	
n-Nitrosodi-n-propylamine	ND	10.0	1	09/30/2020 08:58	WG1548770	
Phenanthrene	ND	1.00	1	09/30/2020 08:58	WG1548770	
Benzylbutyl phthalate	ND	3.00	1	09/30/2020 08:58	WG1548770	
Bis(2-ethylhexyl)phthalate	ND	3.00	1	09/30/2020 08:58	WG1548770	
Di-n-butyl phthalate	ND	3.00	1	09/30/2020 08:58	WG1548770	
Diethyl phthalate	ND	3.00	1	09/30/2020 08:58	WG1548770	
Dimethyl phthalate	ND	3.00	1	09/30/2020 08:58	WG1548770	
Di-n-octyl phthalate	ND	3.00	1	09/30/2020 08:58	WG1548770	
Pyrene	ND	1.00	1	09/30/2020 08:58	WG1548770	
1,2,4-Trichlorobenzene	ND	10.0	1	09/30/2020 08:58	WG1548770	
4-Chloro-3-methylphenol	ND	10.0	1	09/30/2020 08:58	WG1548770	
2-Chlorophenol	ND	10.0	1	09/30/2020 08:58	WG1548770	
2,4-Dichlorophenol	ND	10.0	1	09/30/2020 08:58	WG1548770	
2,4-Dimethylphenol	ND	10.0	1	09/30/2020 08:58	WG1548770	
4,6-Dinitro-2-methylphenol	ND	10.0	1	09/30/2020 08:58	WG1548770	
2,4-Dinitrophenol	ND	10.0	1	09/30/2020 08:58	WG1548770	
2-Nitrophenol	ND	10.0	1	09/30/2020 08:58	WG1548770	
4-Nitrophenol	ND	10.0	1	09/30/2020 08:58	WG1548770	
Pentachlorophenol	ND	10.0	1	09/30/2020 08:58	WG1548770	
	ND	10.0	1	09/30/2020 08:58		
Phenol 2,4,6-Trichlorophenol		10.0	1		WG1548770	
	ND 42.6		I	09/30/2020 08:58	WG1548770	
(S) 2-Fluorophenol	42.6	10.0-120		09/30/2020 08:58	WG1548770	
(S) Phenol-d5	27.0	10.0-120		09/30/2020 08:58	WG1548770	
(S) Nitrobenzene-d5	72.4	10.0-127		09/30/2020 08:58	WG1548770	
(S) 2-Fluorobiphenyl	80.2	10.0-130 10.0-155		09/30/2020 08:58	WG1548770	
(S) 2,4,6-Tribromophenol	81.5	10.0-155		09/30/2020 08:58	WG1548770	
(S) p-Terphenyl-d14	85.6	10.0-128		09/30/2020 08:58	<u>WG1548770</u>	

PROJECT: C4-052-73682 SDG: L1265359 DATE/TIME: 10/05/20 12:26

PAGE: 21 of 86

Collected date/time: 09/21/20 12:18

SAMPLE RESULTS - 05

Тс

Ss

Cn

Qc

GI

Â

Sc

Mercury by Method 7470A

								10
		Result	Qualifier	RDL	Dilution	Analysis	Batch	
Ana	lyte	ug/l		ug/l		date / time		2
Me	cury	ND		0.200	1	09/24/2020 21:54	WG1548373	1

Metals (ICP) by Method 6010D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Arsenic	ND		10.0	1	09/30/2020 08:52	WG1549460	
Barium	796		5.00	1	09/30/2020 08:52	WG1549460	
Cadmium	ND		2.00	1	09/30/2020 08:52	WG1549460	
Chromium	ND		10.0	1	09/30/2020 08:52	WG1549460	
Lead	ND		6.00	1	09/30/2020 08:52	WG1549460	
Selenium	ND		10.0	1	09/30/2020 08:52	WG1549460	
Silver	ND		5.00	1	09/30/2020 08:52	WG1549460	

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l		date / time			
LRH (C5-C8)	ND		100	1	09/30/2020 20:36	WG1551743		
Acetone	ND		50.0	1	09/30/2020 20:36	WG1551743		
Acrylonitrile	ND	JO	10.0	1	09/30/2020 20:36	WG1551743		
Benzene	ND	_	1.00	1	09/30/2020 20:36	WG1551743		
Bromobenzene	ND		1.00	1	09/30/2020 20:36	WG1551743		
Bromodichloromethane	ND		1.00	1	09/30/2020 20:36	WG1551743		
Bromoform	ND		1.00	1	09/30/2020 20:36	WG1551743		
Bromomethane	ND		5.00	1	09/30/2020 20:36	WG1551743		
n-Butylbenzene	ND		1.00	1	09/30/2020 20:36	WG1551743		
sec-Butylbenzene	ND		1.00	1	09/30/2020 20:36	WG1551743		
ert-Butylbenzene	ND		1.00	1	09/30/2020 20:36	WG1551743		
Carbon tetrachloride	ND		1.00	1	09/30/2020 20:36	WG1551743		
Chlorobenzene	1.69		1.00	1	09/30/2020 20:36	WG1551743		
Chlorodibromomethane	ND		1.00	1	09/30/2020 20:36	WG1551743		
Chloroethane	ND		5.00	1	09/30/2020 20:36	WG1551743		
Chloroform	ND		5.00	1	09/30/2020 20:36	WG1551743		
Chloromethane	ND		2.50	1	09/30/2020 20:36	WG1551743		
-Chlorotoluene	ND		1.00	1	09/30/2020 20:36	WG1551743		
-Chlorotoluene	ND		1.00	1	09/30/2020 20:36	WG1551743		
2-Dibromo-3-Chloropropane	ND		5.00	1	09/30/2020 20:36	WG1551743		
,2-Dibromoethane	ND		1.00	1	09/30/2020 20:36	WG1551743		
Dibromomethane	ND		1.00	1	09/30/2020 20:36	WG1551743		
,2-Dichlorobenzene	ND		1.00	1	09/30/2020 20:36	WG1551743		
,3-Dichlorobenzene	ND		1.00	1	09/30/2020 20:36	WG1551743		
,4-Dichlorobenzene	ND		1.00	1	09/30/2020 20:36	WG1551743		
Dichlorodifluoromethane	ND		5.00	1	09/30/2020 20:36	WG1551743		
,1-Dichloroethane	ND		1.00	1	09/30/2020 20:36	WG1551743		
,2-Dichloroethane	ND		1.00	1	09/30/2020 20:36	WG1551743		
,1-Dichloroethene	ND		1.00	1	09/30/2020 20:36	WG1551743		
is-1,2-Dichloroethene	ND		1.00	1	09/30/2020 20:36	WG1551743		
rans-1,2-Dichloroethene	ND		1.00	1	09/30/2020 20:36	WG1551743		
2-Dichloropropane	ND		1.00	1	09/30/2020 20:36	WG1551743		
1-Dichloropropene	ND		1.00	1	09/30/2020 20:36	WG1551743		
,3-Dichloropropane	ND		1.00	1	09/30/2020 20:36	WG1551743		
is-1,3-Dichloropropene	ND		1.00	1	09/30/2020 20:36	WG1551743		
rans-1,3-Dichloropropene	ND		1.00	1	09/30/2020 20:36	WG1551743		
2,2-Dichloropropane	ND		1.00	1	09/30/2020 20:36	WG1551743		
Di-isopropyl ether	ND		1.00	1	09/30/2020 20:36	WG1551743		
Ethylbenzene	ND		1.00	1	09/30/2020 20:36	WG1551743		
ACCOUNT			PR	OJECT:	SDG:	Γ	DATE/TIME:	PA

SCS Engineers - KS

PROJECT: C4-052-73682

L1265359

10/05/20 12:26

*

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Hexachloro-1,3-butadiene	ND		1.00	1	09/30/2020 20:36	WG1551743	
Isopropylbenzene	1.70		1.00	1	09/30/2020 20:36	WG1551743	
p-Isopropyltoluene	ND		1.00	1	09/30/2020 20:36	WG1551743	
2-Butanone (MEK)	ND		10.0	1	09/30/2020 20:36	WG1551743	
Methylene Chloride	ND		5.00	1	09/30/2020 20:36	WG1551743	
4-Methyl-2-pentanone (MIBK)	ND		10.0	1	09/30/2020 20:36	WG1551743	
Methyl tert-butyl ether	ND		1.00	1	09/30/2020 20:36	WG1551743	
Naphthalene	9.82		5.00	1	09/30/2020 20:36	WG1551743	
n-Propylbenzene	ND		1.00	1	09/30/2020 20:36	WG1551743	
Styrene	ND		1.00	1	09/30/2020 20:36	WG1551743	
1,1,1,2-Tetrachloroethane	ND		1.00	1	09/30/2020 20:36	WG1551743	
1,1,2,2-Tetrachloroethane	ND		1.00	1	09/30/2020 20:36	WG1551743	
1,1,2-Trichlorotrifluoroethane	ND		1.00	1	09/30/2020 20:36	WG1551743	
Tetrachloroethene	ND		1.00	1	09/30/2020 20:36	WG1551743	
Toluene	ND		1.00	1	09/30/2020 20:36	WG1551743	
1,2,3-Trichlorobenzene	ND		1.00	1	09/30/2020 20:36	WG1551743	
1,2,4-Trichlorobenzene	ND		1.00	1	09/30/2020 20:36	WG1551743	
1,1,1-Trichloroethane	ND		1.00	1	09/30/2020 20:36	WG1551743	
1,1,2-Trichloroethane	ND		1.00	1	09/30/2020 20:36	WG1551743	
Trichloroethene	ND		1.00	1	09/30/2020 20:36	WG1551743	
Trichlorofluoromethane	5.93		5.00	1	09/30/2020 20:36	WG1551743	
1,2,3-Trichloropropane	ND		2.50	1	09/30/2020 20:36	WG1551743	
1,2,4-Trimethylbenzene	ND		1.00	1	09/30/2020 20:36	WG1551743	
1,2,3-Trimethylbenzene	ND		1.00	1	09/30/2020 20:36	WG1551743	
1,3,5-Trimethylbenzene	ND		1.00	1	09/30/2020 20:36	WG1551743	
Vinyl chloride	ND		1.00	1	09/30/2020 20:36	WG1551743	
Xylenes, Total	ND		3.00	1	09/30/2020 20:36	WG1551743	
(S) Toluene-d8	107		80.0-120		09/30/2020 20:36	WG1551743	
(S) 4-Bromofluorobenzene	102		77.0-126		09/30/2020 20:36	WG1551743	
(S) 1,2-Dichloroethane-d4	90.3		70.0-130		09/30/2020 20:36	WG1551743	

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
MRH (C9-C18)	276		103	1.03	10/03/2020 11:50	WG1547615
HRH (C19-C35)	265		103	1.03	10/03/2020 11:50	WG1547615
(S) 1-Chloro-octadecane	88.9		40.0-140		10/03/2020 11:50	WG1547615

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Acenaphthene	ND		1.00	1	09/30/2020 09:19	WG1548770
Acenaphthylene	ND		1.00	1	09/30/2020 09:19	WG1548770
Anthracene	ND		1.00	1	09/30/2020 09:19	WG1548770
Benzidine	ND		10.0	1	09/30/2020 09:19	WG1548770
Benzo(a)anthracene	ND		1.00	1	09/30/2020 09:19	WG1548770
Benzo(b)fluoranthene	ND		1.00	1	09/30/2020 09:19	<u>WG1548770</u>
Benzo(k)fluoranthene	ND		1.00	1	09/30/2020 09:19	WG1548770
Benzo(g,h,i)perylene	ND		1.00	1	09/30/2020 09:19	<u>WG1548770</u>
Benzo(a)pyrene	ND		1.00	1	09/30/2020 09:19	WG1548770
Bis(2-chlorethoxy)methane	ND		10.0	1	09/30/2020 09:19	<u>WG1548770</u>
Bis(2-chloroethyl)ether	ND		10.0	1	09/30/2020 09:19	WG1548770
2,2-Oxybis(1-Chloropropane)	ND		10.0	1	09/30/2020 09:19	WG1548770
4-Bromophenyl-phenylether	ND		10.0	1	09/30/2020 09:19	WG1548770
2-Chloronaphthalene	ND		1.00	1	09/30/2020 09:19	WG1548770

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1265359 DATE/TIME: 10/05/20 12:26

PAGE: 23 of 86

SAMPLE RESULTS - 05 L1265359

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	ug/l		ug/l		date / time		
4-Chlorophenyl-phenylether	ND		10.0	1	09/30/2020 09:19	WG1548770	² Tc
Chrysene	ND		1.00	1	09/30/2020 09:19	WG1548770	
Dibenz(a,h)anthracene	ND		1.00	1	09/30/2020 09:19	WG1548770	3
1,2-Dichlorobenzene	ND		10.0	1	09/30/2020 09:19	WG1548770	ິSs
1,3-Dichlorobenzene	ND		10.0	1	09/30/2020 09:19	WG1548770	
1,4-Dichlorobenzene	ND		10.0	1	09/30/2020 09:19	WG1548770	⁴ Cr
3,3-Dichlorobenzidine	ND		10.0	1	09/30/2020 09:19	WG1548770	0
2,4-Dinitrotoluene	ND		10.0	1	09/30/2020 09:19	WG1548770	5
2,6-Dinitrotoluene	ND		10.0	1	09/30/2020 09:19	WG1548770	ຶSr
Fluoranthene	ND		1.00	1	09/30/2020 09:19	WG1548770	
Fluorene	ND		1.00	1	09/30/2020 09:19	WG1548770	⁶ Qo
Hexachlorobenzene	ND		1.00	1	09/30/2020 09:19	WG1548770	Q
Hexachloro-1,3-butadiene	ND		10.0	1	09/30/2020 09:19	WG1548770	7
Hexachlorocyclopentadiene	ND		10.0	1	09/30/2020 09:19	WG1548770	΄ GΙ
Hexachloroethane	ND		10.0	1	09/30/2020 09:19	WG1548770	
Indeno(1,2,3-cd)pyrene	ND		1.00	1	09/30/2020 09:19	WG1548770	⁸ Al
Isophorone	ND		10.0	1	09/30/2020 09:19	WG1548770	7.0
Naphthalene	7.12		1.00	1	09/30/2020 09:19	WG1548770	9
Nitrobenzene	ND		10.0	1	09/30/2020 09:19	WG1548770	ຶSc
n-Nitrosodimethylamine	ND		10.0	1	09/30/2020 09:19	WG1548770	
n-Nitrosodiphenylamine	ND		10.0	1	09/30/2020 09:19	WG1548770	
n-Nitrosodi-n-propylamine	ND		10.0	1	09/30/2020 09:19	WG1548770	
Phenanthrene	ND		1.00	1	09/30/2020 09:19	WG1548770	
Benzylbutyl phthalate	ND		3.00	1	09/30/2020 09:19	WG1548770	
Bis(2-ethylhexyl)phthalate	ND		3.00	1	09/30/2020 09:19	WG1548770	
Di-n-butyl phthalate	ND		3.00	1	09/30/2020 09:19	WG1548770	
Diethyl phthalate	ND		3.00	1	09/30/2020 09:19	WG1548770	
Dimethyl phthalate	ND		3.00	1	09/30/2020 09:19	WG1548770	
Di-n-octyl phthalate	ND		3.00	1	09/30/2020 09:19	WG1548770	
Pyrene	ND		1.00	1	09/30/2020 09:19	WG1548770	
1,2,4-Trichlorobenzene	ND		10.0	1	09/30/2020 09:19	WG1548770	
4-Chloro-3-methylphenol	ND		10.0	1	09/30/2020 09:19	WG1548770	
2-Chlorophenol	ND		10.0	1	09/30/2020 09:19	WG1548770	
2,4-Dichlorophenol	ND		10.0	1	09/30/2020 09:19	WG1548770	
2,4-Dimethylphenol	ND		10.0	1	09/30/2020 09:19	WG1548770	
4,6-Dinitro-2-methylphenol	ND		10.0	1	09/30/2020 09:19	WG1548770	
2,4-Dinitrophenol	ND		10.0	1	09/30/2020 09:19	WG1548770	
2-Nitrophenol	ND		10.0	1	09/30/2020 09:19	WG1548770	
4-Nitrophenol	ND		10.0	1	09/30/2020 09:19	WG1548770	
Pentachlorophenol	ND		10.0	1	09/30/2020 09:19	WG1548770	
Phenol	ND		10.0	1	09/30/2020 09:19	WG1548770	
2,4,6-Trichlorophenol	ND		10.0	1	09/30/2020 09:19	WG1548770	
(S) 2-Fluorophenol	50.0		10.0-120		09/30/2020 09:19	WG1548770	
(S) Phenol-d5	29.3		10.0-120		09/30/2020 09:19	WG1548770	
(S) Nitrobenzene-d5	85.0		10.0-127		09/30/2020 09:19	WG1548770	
(S) 2-Fluorobiphenyl	93.6		10.0-130		09/30/2020 09:19	WG1548770	
(S) 2,4,6-Tribromophenol	98.0		10.0-155		09/30/2020 09:19	WG1548770	
(S) p-Terphenyl-d14	100		10.0-128		09/30/2020 09:19	WG1548770	

SDG: L1265359

Collected date/time: 09/21/20 13:35

SAMPLE RESULTS - 06

Ss

Cn

Qc

Gl

Â

Sc

Mercury by Method 7470A

								, I
	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l		date / time		2	Ē
Mercury	ND		0.200	1	09/24/2020 21:56	WG1548373	Tc	

Metals (ICP) by Method 6010D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Arsenic	ND		10.0	1	09/30/2020 07:35	WG1549460	
Barium	5190		5.00	1	09/30/2020 07:35	WG1549460	
Cadmium	ND		2.00	1	09/30/2020 07:35	WG1549460	
Chromium	ND		10.0	1	09/30/2020 07:35	WG1549460	
Lead	ND		6.00	1	09/30/2020 07:35	WG1549460	
Selenium	ND		10.0	1	09/30/2020 07:35	WG1549460	
Silver	ND		5.00	1	09/30/2020 07:35	WG1549460	

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
.RH (C5-C8)	ND		100	1	09/30/2020 20:55	WG1551743	
Acetone	ND		50.0	1	09/30/2020 20:55	WG1551743	
Acrylonitrile	ND	JO	10.0	1	09/30/2020 20:55	WG1551743	
Benzene	6.49		1.00	1	09/30/2020 20:55	WG1551743	
Bromobenzene	ND		1.00	1	09/30/2020 20:55	WG1551743	
Bromodichloromethane	ND		1.00	1	09/30/2020 20:55	WG1551743	
Bromoform	ND		1.00	1	09/30/2020 20:55	WG1551743	
Bromomethane	ND		5.00	1	09/30/2020 20:55	WG1551743	
n-Butylbenzene	ND		1.00	1	09/30/2020 20:55	WG1551743	
sec-Butylbenzene	1.18		1.00	1	09/30/2020 20:55	WG1551743	
ert-Butylbenzene	ND		1.00	1	09/30/2020 20:55	WG1551743	
Carbon tetrachloride	ND		1.00	1	09/30/2020 20:55	WG1551743	
Chlorobenzene	2.42		1.00	1	09/30/2020 20:55	WG1551743	
Chlorodibromomethane	ND		1.00	1	09/30/2020 20:55	WG1551743	
Chloroethane	ND		5.00	1	09/30/2020 20:55	WG1551743	
Chloroform	ND		5.00	1	09/30/2020 20:55	WG1551743	
Chloromethane	ND		2.50	1	09/30/2020 20:55	WG1551743	
-Chlorotoluene	ND		1.00	1	09/30/2020 20:55	WG1551743	
-Chlorotoluene	ND		1.00	1	09/30/2020 20:55	WG1551743	
,2-Dibromo-3-Chloropropane	ND		5.00	1	09/30/2020 20:55	WG1551743	
,2-Dibromoethane	ND		1.00	1	09/30/2020 20:55	WG1551743	
Dibromomethane	ND		1.00	1	09/30/2020 20:55	WG1551743	
,2-Dichlorobenzene	ND		1.00	1	09/30/2020 20:55	WG1551743	
,3-Dichlorobenzene	ND		1.00	1	09/30/2020 20:55	WG1551743	
,4-Dichlorobenzene	1.14		1.00	1	09/30/2020 20:55	WG1551743	
Dichlorodifluoromethane	ND		5.00	1	09/30/2020 20:55	WG1551743	
,1-Dichloroethane	ND		1.00	1	09/30/2020 20:55	WG1551743	
,2-Dichloroethane	ND		1.00	1	09/30/2020 20:55	WG1551743	
,1-Dichloroethene	ND		1.00	1	09/30/2020 20:55	WG1551743	
is-1,2-Dichloroethene	ND		1.00	1	09/30/2020 20:55	WG1551743	
rans-1,2-Dichloroethene	ND		1.00	1	09/30/2020 20:55	WG1551743	
,2-Dichloropropane	ND		1.00	1	09/30/2020 20:55	WG1551743	
,1-Dichloropropene	ND		1.00	1	09/30/2020 20:55	WG1551743	
,3-Dichloropropane	ND		1.00	1	09/30/2020 20:55	WG1551743	
is-1,3-Dichloropropene	ND		1.00	1	09/30/2020 20:55	WG1551743	
rans-1,3-Dichloropropene	ND		1.00	1	09/30/2020 20:55	WG1551743	
2,2-Dichloropropane	ND		1.00	1	09/30/2020 20:55	WG1551743	
Di-isopropyl ether	ND		1.00	1	09/30/2020 20:55	WG1551743	
			1.00	1	09/30/2020 20:55	WG1551743	

SCS Engineers - KS

PROJECT: C4-052-73682 SDG: L1265359

10/05/20 12:26

*

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Hexachloro-1,3-butadiene	ND		1.00	1	09/30/2020 20:55	WG1551743	
Isopropylbenzene	3.28		1.00	1	09/30/2020 20:55	<u>WG1551743</u>	
p-Isopropyltoluene	ND		1.00	1	09/30/2020 20:55	<u>WG1551743</u>	
2-Butanone (MEK)	ND		10.0	1	09/30/2020 20:55	WG1551743	
Methylene Chloride	ND		5.00	1	09/30/2020 20:55	<u>WG1551743</u>	
4-Methyl-2-pentanone (MIBK)	ND		10.0	1	09/30/2020 20:55	<u>WG1551743</u>	
Methyl tert-butyl ether	ND		1.00	1	09/30/2020 20:55	WG1551743	
Naphthalene	5.60		5.00	1	09/30/2020 20:55	<u>WG1551743</u>	
n-Propylbenzene	2.81		1.00	1	09/30/2020 20:55	WG1551743	
Styrene	ND		1.00	1	09/30/2020 20:55	WG1551743	
1,1,1,2-Tetrachloroethane	ND		1.00	1	09/30/2020 20:55	WG1551743	
1,1,2,2-Tetrachloroethane	ND		1.00	1	09/30/2020 20:55	WG1551743	
1,1,2-Trichlorotrifluoroethane	ND		1.00	1	09/30/2020 20:55	<u>WG1551743</u>	
Tetrachloroethene	ND		1.00	1	09/30/2020 20:55	WG1551743	
Toluene	ND		1.00	1	09/30/2020 20:55	<u>WG1551743</u>	
1,2,3-Trichlorobenzene	ND		1.00	1	09/30/2020 20:55	<u>WG1551743</u>	
1,2,4-Trichlorobenzene	ND		1.00	1	09/30/2020 20:55	<u>WG1551743</u>	
1,1,1-Trichloroethane	ND		1.00	1	09/30/2020 20:55	<u>WG1551743</u>	
1,1,2-Trichloroethane	ND		1.00	1	09/30/2020 20:55	<u>WG1551743</u>	
Trichloroethene	ND		1.00	1	09/30/2020 20:55	WG1551743	
Trichlorofluoromethane	ND		5.00	1	09/30/2020 20:55	WG1551743	
1,2,3-Trichloropropane	ND		2.50	1	09/30/2020 20:55	WG1551743	
1,2,4-Trimethylbenzene	2.74		1.00	1	09/30/2020 20:55	<u>WG1551743</u>	
1,2,3-Trimethylbenzene	1.54		1.00	1	09/30/2020 20:55	WG1551743	
1,3,5-Trimethylbenzene	ND		1.00	1	09/30/2020 20:55	WG1551743	
Vinyl chloride	ND		1.00	1	09/30/2020 20:55	WG1551743	
Xylenes, Total	3.26		3.00	1	09/30/2020 20:55	WG1551743	
(S) Toluene-d8	108		80.0-120		09/30/2020 20:55	WG1551743	
(S) 4-Bromofluorobenzene	104		77.0-126		09/30/2020 20:55	WG1551743	
(S) 1,2-Dichloroethane-d4	89.9		70.0-130		09/30/2020 20:55	WG1551743	

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
MRH (C9-C18)	472		103	1.03	10/03/2020 12:13	WG1547615
HRH (C19-C35)	367		103	1.03	10/03/2020 12:13	WG1547615
(S) 1-Chloro-octadecane	96.5		40.0-140		10/03/2020 12:13	WG1547615

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Acenaphthene	ND		1.00	1	09/30/2020 10:22	WG1548770
Acenaphthylene	ND		1.00	1	09/30/2020 10:22	WG1548770
Anthracene	ND		1.00	1	09/30/2020 10:22	WG1548770
Benzidine	ND		10.0	1	09/30/2020 10:22	WG1548770
Benzo(a)anthracene	ND		1.00	1	09/30/2020 10:22	WG1548770
Benzo(b)fluoranthene	ND		1.00	1	09/30/2020 10:22	WG1548770
Benzo(k)fluoranthene	ND		1.00	1	09/30/2020 10:22	WG1548770
Benzo(g,h,i)perylene	ND		1.00	1	09/30/2020 10:22	WG1548770
Benzo(a)pyrene	ND		1.00	1	09/30/2020 10:22	WG1548770
Bis(2-chlorethoxy)methane	ND		10.0	1	09/30/2020 10:22	WG1548770
Bis(2-chloroethyl)ether	ND		10.0	1	09/30/2020 10:22	WG1548770
2,2-Oxybis(1-Chloropropane)	ND		10.0	1	09/30/2020 10:22	WG1548770
4-Bromophenyl-phenylether	ND		10.0	1	09/30/2020 10:22	WG1548770
2-Chloronaphthalene	ND		1.00	1	09/30/2020 10:22	WG1548770

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1265359 DATE/TIME: 10/05/20 12:26

PAGE: 26 of 86

SAMPLE RESULTS - 06 L1265359

<u>پو</u>

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

A	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	ug/l		ug/l	4	date / time	WIC45 40770	
4-Chlorophenyl-phenylether	ND		10.0	1	09/30/2020 10:22	WG1548770	Tc
Chrysene	ND		1.00	1	09/30/2020 10:22	WG1548770	
Dibenz(a,h)anthracene	ND		1.00	1	09/30/2020 10:22	WG1548770	³ Ss
1,2-Dichlorobenzene	ND		10.0	1	09/30/2020 10:22	WG1548770	
1,3-Dichlorobenzene	ND		10.0	1	09/30/2020 10:22	WG1548770	4
1,4-Dichlorobenzene	ND		10.0	1	09/30/2020 10:22	WG1548770	Cr
3,3-Dichlorobenzidine	ND		10.0	1	09/30/2020 10:22	WG1548770	
2,4-Dinitrotoluene	ND		10.0	1	09/30/2020 10:22	WG1548770	⁵ Sr
2,6-Dinitrotoluene	ND		10.0	1	09/30/2020 10:22	WG1548770	
Fluoranthene	ND		1.00	1	09/30/2020 10:22	WG1548770	6
Fluorene	ND		1.00	1	09/30/2020 10:22	WG1548770	ۜQ
Hexachlorobenzene	ND		1.00	1	09/30/2020 10:22	WG1548770	
Hexachloro-1,3-butadiene	ND		10.0	1	09/30/2020 10:22	WG1548770	
Hexachlorocyclopentadiene	ND		10.0	1	09/30/2020 10:22	WG1548770	GI
Hexachloroethane	ND		10.0	1	09/30/2020 10:22	WG1548770	
Indeno(1,2,3-cd)pyrene	ND		1.00	1	09/30/2020 10:22	WG1548770	A
Isophorone	ND		10.0	1	09/30/2020 10:22	<u>WG1548770</u>	
Naphthalene	4.20		1.00	1	09/30/2020 10:22	WG1548770	9
Nitrobenzene	ND		10.0	1	09/30/2020 10:22	WG1548770	ິSc
n-Nitrosodimethylamine	ND		10.0	1	09/30/2020 10:22	WG1548770	
n-Nitrosodiphenylamine	ND		10.0	1	09/30/2020 10:22	WG1548770	
n-Nitrosodi-n-propylamine	ND		10.0	1	09/30/2020 10:22	WG1548770	
Phenanthrene	ND		1.00	1	09/30/2020 10:22	WG1548770	
Benzylbutyl phthalate	ND		3.00	1	09/30/2020 10:22	WG1548770	
Bis(2-ethylhexyl)phthalate	ND		3.00	1	09/30/2020 10:22	WG1548770	
Di-n-butyl phthalate	ND		3.00	1	09/30/2020 10:22	WG1548770	
Diethyl phthalate	ND		3.00	1	09/30/2020 10:22	WG1548770	
Dimethyl phthalate	ND		3.00	1	09/30/2020 10:22	WG1548770	
Di-n-octyl phthalate	ND		3.00	1	09/30/2020 10:22	WG1548770	
Pyrene	ND		1.00	1	09/30/2020 10:22	WG1548770	
1,2,4-Trichlorobenzene	ND		10.0	1	09/30/2020 10:22	WG1548770	
4-Chloro-3-methylphenol	ND		10.0	1	09/30/2020 10:22	WG1548770	
2-Chlorophenol	ND		10.0	1	09/30/2020 10:22	WG1548770	
2,4-Dichlorophenol	ND		10.0	1	09/30/2020 10:22	WG1548770	
2,4-Dimethylphenol	ND		10.0	1	09/30/2020 10:22	WG1548770	
4,6-Dinitro-2-methylphenol	ND		10.0	1	09/30/2020 10:22	WG1548770	
2,4-Dinitrophenol	ND		10.0	1	09/30/2020 10:22	WG1548770	
2-Nitrophenol	ND		10.0	1	09/30/2020 10:22	WG1548770	
4-Nitrophenol	ND		10.0	1	09/30/2020 10:22	WG1548770	
Pentachlorophenol	ND		10.0	1	09/30/2020 10:22	WG1548770	
Phenol	ND		10.0	1	09/30/2020 10:22	WG1548770	
2,4,6-Trichlorophenol	ND		10.0	1	09/30/2020 10:22	WG1548770	
(S) 2-Fluorophenol	44.7		10.0-120		09/30/2020 10:22	WG1548770	
(S) Phenol-d5	27.1		10.0-120		09/30/2020 10:22	WG1548770	
(S) Nitrobenzene-d5	91.6		10.0-127		09/30/2020 10:22	WG1548770	
(S) 2-Fluorobiphenyl	86.2		10.0-130		09/30/2020 10:22	WG1548770	
(S) 2,4,6-Tribromophenol	87.0		10.0-155		09/30/2020 10:22	WG1548770	
(S) p-Terphenyl-d14	86.8		10.0-128		09/30/2020 10:22	WG1548770	

SDG: L1265359

Collected date/time: 09/21/20 11:42

SAMPLE RESULTS - 07

Ср

Тс

Ss

Cn

Qc

GI

ΆI

Sc

Mercury by Method 7470A

								1.0
		Result	Qualifier	RDL	Dilution	Analysis	Batch	
Ana	lyte	ug/l		ug/l		date / time		2
Me	cury	ND		0.200	1	09/24/2020 21:58	WG1548373	T

Metals (ICP) by Method 6010D

	Result	Qualifier RDL	Dilution	Analysis	Batch	
Analyte	ug/l	ug/l		date / time		
Arsenic	ND	10.0	1	09/30/2020 07:38	WG1549460	
Barium	668	5.00	1	09/30/2020 07:38	WG1549460	
Cadmium	ND	2.00	1	09/30/2020 07:38	WG1549460	
Chromium	ND	10.0	1	09/30/2020 07:38	WG1549460	
Lead	26.1	6.00	1	09/30/2020 07:38	WG1549460	
Selenium	ND	10.0	1	09/30/2020 07:38	WG1549460	
Silver	ND	5.00	1	09/30/2020 07:38	WG1549460	

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
LRH (C5-C8)	ND		100	1	09/30/2020 21:15	WG1551743
Acetone	ND		50.0	1	09/30/2020 21:15	WG1551743
Acrylonitrile	ND	JO	10.0	1	09/30/2020 21:15	WG1551743
Benzene	2.03		1.00	1	09/30/2020 21:15	WG1551743
Bromobenzene	ND		1.00	1	09/30/2020 21:15	WG1551743
Bromodichloromethane	ND		1.00	1	09/30/2020 21:15	WG1551743
Bromoform	ND		1.00	1	09/30/2020 21:15	WG1551743
Bromomethane	ND		5.00	1	09/30/2020 21:15	WG1551743
n-Butylbenzene	ND		1.00	1	09/30/2020 21:15	WG1551743
sec-Butylbenzene	ND		1.00	1	09/30/2020 21:15	WG1551743
tert-Butylbenzene	ND		1.00	1	09/30/2020 21:15	WG1551743
Carbon tetrachloride	ND		1.00	1	09/30/2020 21:15	WG1551743
Chlorobenzene	ND		1.00	1	09/30/2020 21:15	WG1551743
Chlorodibromomethane	ND		1.00	1	09/30/2020 21:15	WG1551743
Chloroethane	ND		5.00	1	09/30/2020 21:15	WG1551743
Chloroform	ND		5.00	1	09/30/2020 21:15	WG1551743
Chloromethane	ND		2.50	1	09/30/2020 21:15	WG1551743
2-Chlorotoluene	ND		1.00	1	09/30/2020 21:15	WG1551743
4-Chlorotoluene	ND		1.00	1	09/30/2020 21:15	WG1551743
1,2-Dibromo-3-Chloropropane	ND		5.00	1	09/30/2020 21:15	WG1551743
1,2-Dibromoethane	ND		1.00	1	09/30/2020 21:15	WG1551743
Dibromomethane	ND		1.00	1	09/30/2020 21:15	WG1551743
1,2-Dichlorobenzene	ND		1.00	1	09/30/2020 21:15	WG1551743
1,3-Dichlorobenzene	ND		1.00	1	09/30/2020 21:15	WG1551743
1,4-Dichlorobenzene	ND		1.00	1	09/30/2020 21:15	WG1551743
Dichlorodifluoromethane	ND		5.00	1	09/30/2020 21:15	WG1551743
1,1-Dichloroethane	ND		1.00	1	09/30/2020 21:15	WG1551743
1,2-Dichloroethane	ND		1.00	1	09/30/2020 21:15	WG1551743
1,1-Dichloroethene	ND		1.00	1	09/30/2020 21:15	WG1551743
cis-1,2-Dichloroethene	ND		1.00	1	09/30/2020 21:15	WG1551743
trans-1,2-Dichloroethene	ND		1.00	1	09/30/2020 21:15	WG1551743
1,2-Dichloropropane	ND		1.00	1	09/30/2020 21:15	WG1551743
1,1-Dichloropropene	ND		1.00	1	09/30/2020 21:15	WG1551743
1,3-Dichloropropane	ND		1.00	1	09/30/2020 21:15	WG1551743
cis-1,3-Dichloropropene	ND		1.00	1	09/30/2020 21:15	WG1551743
trans-1,3-Dichloropropene	ND		1.00	1	09/30/2020 21:15	WG1551743
2,2-Dichloropropane	ND		1.00	1	09/30/2020 21:15	WG1551743
Di-isopropyl ether	ND		1.00	1	09/30/2020 21:15	WG1551743
Ethylbenzene	ND		1.00	1	09/30/2020 21:15	WG1551743
ACCOUNT	Г:		PF	OJECT:	SDG:	DATE/TIME: P

SCS Engineers - KS

PROJECT: C4-052-73682

L1265359

1

PAGE: 28 of 86

₩

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Hexachloro-1,3-butadiene	ND		1.00	1	09/30/2020 21:15	WG1551743	
Isopropylbenzene	ND		1.00	1	09/30/2020 21:15	WG1551743	
p-Isopropyltoluene	ND		1.00	1	09/30/2020 21:15	WG1551743	
2-Butanone (MEK)	ND		10.0	1	09/30/2020 21:15	WG1551743	
Methylene Chloride	ND		5.00	1	09/30/2020 21:15	WG1551743	
4-Methyl-2-pentanone (MIBK)	ND		10.0	1	09/30/2020 21:15	WG1551743	
Methyl tert-butyl ether	ND		1.00	1	09/30/2020 21:15	WG1551743	
Naphthalene	ND		5.00	1	09/30/2020 21:15	WG1551743	
n-Propylbenzene	ND		1.00	1	09/30/2020 21:15	WG1551743	
Styrene	ND		1.00	1	09/30/2020 21:15	WG1551743	
1,1,1,2-Tetrachloroethane	ND		1.00	1	09/30/2020 21:15	WG1551743	
1,1,2,2-Tetrachloroethane	ND		1.00	1	09/30/2020 21:15	WG1551743	
1,1,2-Trichlorotrifluoroethane	ND		1.00	1	09/30/2020 21:15	WG1551743	
Tetrachloroethene	ND		1.00	1	09/30/2020 21:15	WG1551743	
Toluene	ND		1.00	1	09/30/2020 21:15	WG1551743	
1,2,3-Trichlorobenzene	ND		1.00	1	09/30/2020 21:15	WG1551743	
1,2,4-Trichlorobenzene	ND		1.00	1	09/30/2020 21:15	WG1551743	
1,1,1-Trichloroethane	ND		1.00	1	09/30/2020 21:15	WG1551743	
1,1,2-Trichloroethane	ND		1.00	1	09/30/2020 21:15	WG1551743	
Trichloroethene	ND		1.00	1	09/30/2020 21:15	WG1551743	
Trichlorofluoromethane	ND		5.00	1	09/30/2020 21:15	WG1551743	
1,2,3-Trichloropropane	ND		2.50	1	09/30/2020 21:15	WG1551743	
1,2,4-Trimethylbenzene	ND		1.00	1	09/30/2020 21:15	WG1551743	
1,2,3-Trimethylbenzene	ND		1.00	1	09/30/2020 21:15	WG1551743	
1,3,5-Trimethylbenzene	ND		1.00	1	09/30/2020 21:15	WG1551743	
Vinyl chloride	ND		1.00	1	09/30/2020 21:15	<u>WG1551743</u>	
Xylenes, Total	ND		3.00	1	09/30/2020 21:15	<u>WG1551743</u>	
(S) Toluene-d8	110		80.0-120		09/30/2020 21:15	<u>WG1551743</u>	
(S) 4-Bromofluorobenzene	107		77.0-126		09/30/2020 21:15	<u>WG1551743</u>	
(S) 1,2-Dichloroethane-d4	96.1		70.0-130		09/30/2020 21:15	WG1551743	

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
MRH (C9-C18)	221		103	1.03	10/03/2020 12:36	WG1547615
HRH (C19-C35)	695		103	1.03	10/03/2020 12:36	WG1547615
(S) 1-Chloro-octadecane	94.9		40.0-140		10/03/2020 12:36	WG1547615

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Acenaphthene	ND		1.00	1	09/30/2020 09:40	WG1548770
Acenaphthylene	ND		1.00	1	09/30/2020 09:40	WG1548770
Anthracene	ND		1.00	1	09/30/2020 09:40	WG1548770
Benzidine	ND		10.0	1	09/30/2020 09:40	WG1548770
Benzo(a)anthracene	ND		1.00	1	09/30/2020 09:40	WG1548770
Benzo(b)fluoranthene	ND		1.00	1	09/30/2020 09:40	WG1548770
Benzo(k)fluoranthene	ND		1.00	1	09/30/2020 09:40	WG1548770
Benzo(g,h,i)perylene	ND		1.00	1	09/30/2020 09:40	WG1548770
Benzo(a)pyrene	ND		1.00	1	09/30/2020 09:40	WG1548770
Bis(2-chlorethoxy)methane	ND		10.0	1	09/30/2020 09:40	WG1548770
Bis(2-chloroethyl)ether	ND		10.0	1	09/30/2020 09:40	WG1548770
2,2-Oxybis(1-Chloropropane)	ND		10.0	1	09/30/2020 09:40	WG1548770
4-Bromophenyl-phenylether	ND		10.0	1	09/30/2020 09:40	WG1548770
2-Chloronaphthalene	ND		1.00	1	09/30/2020 09:40	WG1548770

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1265359 DATE/TIME: 10/05/20 12:26

PAGE: 29 of 86

SAMPLE RESULTS - 07 L1265359

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	ug/l		ug/l		date / time		
4-Chlorophenyl-phenylether	ND		10.0	1	09/30/2020 09:40	WG1548770	² Tc
Chrysene	ND		1.00	1	09/30/2020 09:40	WG1548770	
Dibenz(a,h)anthracene	ND		1.00	1	09/30/2020 09:40	WG1548770	3
1,2-Dichlorobenzene	ND		10.0	1	09/30/2020 09:40	WG1548770	ŠSs
1,3-Dichlorobenzene	ND		10.0	1	09/30/2020 09:40	WG1548770	
1,4-Dichlorobenzene	ND		10.0	1	09/30/2020 09:40	WG1548770	⁴ Cn
3,3-Dichlorobenzidine	ND		10.0	1	09/30/2020 09:40	WG1548770	
2,4-Dinitrotoluene	ND		10.0	1	09/30/2020 09:40	WG1548770	5
2,6-Dinitrotoluene	ND		10.0	1	09/30/2020 09:40	WG1548770	ິSr
Fluoranthene	ND		1.00	1	09/30/2020 09:40	WG1548770	
Fluorene	ND		1.00	1	09/30/2020 09:40	WG1548770	⁶ Qc
Hexachlorobenzene	ND		1.00	1	09/30/2020 09:40	WG1548770	
Hexachloro-1,3-butadiene	ND		10.0	1	09/30/2020 09:40	WG1548770	7
Hexachlorocyclopentadiene	ND		10.0	1	09/30/2020 09:40	WG1548770	΄ GΙ
Hexachloroethane	ND		10.0	1	09/30/2020 09:40	WG1548770	
Indeno(1,2,3-cd)pyrene	ND		1.00	1	09/30/2020 09:40	WG1548770	⁸ Al
Isophorone	ND		10.0	1	09/30/2020 09:40	WG1548770	
Naphthalene	ND		1.00	1	09/30/2020 09:40	WG1548770	9
Nitrobenzene	ND		10.0	1	09/30/2020 09:40	WG1548770	ŠC
n-Nitrosodimethylamine	ND		10.0	1	09/30/2020 09:40	WG1548770	
n-Nitrosodiphenylamine	ND		10.0	1	09/30/2020 09:40	WG1548770	
n-Nitrosodi-n-propylamine	ND		10.0	1	09/30/2020 09:40	WG1548770	
Phenanthrene	ND		1.00	1	09/30/2020 09:40	WG1548770	
Benzylbutyl phthalate	ND		3.00	1	09/30/2020 09:40	WG1548770	
Bis(2-ethylhexyl)phthalate	ND		3.00	1	09/30/2020 09:40	WG1548770	
Di-n-butyl phthalate	ND		3.00	1	09/30/2020 09:40	WG1548770	
Diethyl phthalate	ND		3.00	1	09/30/2020 09:40	WG1548770	
Dimethyl phthalate	ND		3.00	1	09/30/2020 09:40	WG1548770	
Di-n-octyl phthalate	ND		3.00	1	09/30/2020 09:40	WG1548770	
Pyrene	ND		1.00	1	09/30/2020 09:40	WG1548770	
1,2,4-Trichlorobenzene	ND		10.0	1	09/30/2020 09:40	WG1548770	
4-Chloro-3-methylphenol	ND		10.0	1	09/30/2020 09:40	WG1548770	
2-Chlorophenol	ND		10.0	1	09/30/2020 09:40	WG1548770	
2,4-Dichlorophenol	ND		10.0	1	09/30/2020 09:40	WG1548770	
2,4-Dimethylphenol	ND		10.0	1	09/30/2020 09:40	WG1548770	
4,6-Dinitro-2-methylphenol	ND		10.0	1	09/30/2020 09:40	WG1548770	
2,4-Dinitrophenol	ND		10.0	1	09/30/2020 09:40	WG1548770	
2-Nitrophenol	ND		10.0	1	09/30/2020 09:40	WG1548770	
4-Nitrophenol	ND		10.0	1	09/30/2020 09:40	WG1548770	
Pentachlorophenol	ND		10.0	1	09/30/2020 09:40	WG1548770	
Phenol	ND		10.0	1	09/30/2020 09:40	WG1548770	
2,4,6-Trichlorophenol	ND		10.0	1	09/30/2020 09:40	WG1548770	
(S) 2-Fluorophenol	42.0		10.0-120		09/30/2020 09:40	WG1548770	
(S) Phenol-d5	26.7		10.0-120		09/30/2020 09:40	WG1548770	
(S) Nitrobenzene-d5	72.1		10.0-127		09/30/2020 09:40	WG1548770	
(S) 2-Fluorobiphenyl	82.1		10.0-130		09/30/2020 09:40	WG1548770	
(S) 2,4,6-Tribromophenol	83.5		10.0-155		09/30/2020 09:40	WG1548770	
(S) p-Terphenyl-d14	85.7		10.0-128		09/30/2020 09:40	WG1548770	

PROJECT: C4-052-73682

SDG: L1265359

DATE/TIME: 10/05/20 12:26

PAGE: 30 of 86

₩

Volatile Organic Compounds (GC/MS) by Method 8260D

Analyte	Result	Qualifier	RDL	Dilution	Analysis date / time	Batch	
•	ug/l		ug/l 100	1	09/30/2020 21:34	WC1EE1740	2_
LRH (C5-C8)						WG1551743	
Acetone	ND	10	50.0	1	09/30/2020 21:34	WG1551743	2
Acrylonitrile	ND	JO	10.0	1	09/30/2020 21:34	WG1551743	ິເ
Benzene	ND		1.00	1	09/30/2020 21:34	WG1551743	
Bromobenzene	ND		1.00	1	09/30/2020 21:34	WG1551743	4
Bromodichloromethane	ND		1.00	1	09/30/2020 21:34	WG1551743	· (
Bromoform	ND		1.00	1	09/30/2020 21:34	WG1551743	
Bromomethane	ND		5.00	1	09/30/2020 21:34	WG1551743	5
n-Butylbenzene	ND		1.00	1	09/30/2020 21:34	WG1551743	
sec-Butylbenzene	ND		1.00	1	09/30/2020 21:34	WG1551743	6
tert-Butylbenzene	ND		1.00	1	09/30/2020 21:34	WG1551743	Č
Carbon tetrachloride	ND		1.00	1	09/30/2020 21:34	WG1551743	L
Chlorobenzene	ND		1.00	1	09/30/2020 21:34	WG1551743	7
Chlorodibromomethane	ND		1.00	1	09/30/2020 21:34	WG1551743	
Chloroethane	ND		5.00	1	09/30/2020 21:34	WG1551743	
Chloroform	ND		5.00	1	09/30/2020 21:34	WG1551743	8
Chloromethane	ND		2.50	1	09/30/2020 21:34	WG1551743	Ľ
2-Chlorotoluene	ND		1.00	1	09/30/2020 21:34	WG1551743	9
4-Chlorotoluene	ND		1.00	1	09/30/2020 21:34	WG1551743	
1,2-Dibromo-3-Chloropropane	ND		5.00	1	09/30/2020 21:34	WG1551743	
1,2-Dibromoethane	ND		1.00		09/30/2020 21:34		
,				1		WG1551743	
Dibromomethane	ND		1.00	1	09/30/2020 21:34	WG1551743	
1,2-Dichlorobenzene	ND		1.00	1	09/30/2020 21:34	WG1551743	
1,3-Dichlorobenzene	ND		1.00	1	09/30/2020 21:34	WG1551743	
1,4-Dichlorobenzene	ND		1.00	1	09/30/2020 21:34	WG1551743	
Dichlorodifluoromethane	ND		5.00	1	09/30/2020 21:34	WG1551743	
1,1-Dichloroethane	ND		1.00	1	09/30/2020 21:34	WG1551743	
1,2-Dichloroethane	ND		1.00	1	09/30/2020 21:34	WG1551743	
1,1-Dichloroethene	ND		1.00	1	09/30/2020 21:34	WG1551743	
cis-1,2-Dichloroethene	ND		1.00	1	09/30/2020 21:34	WG1551743	
trans-1,2-Dichloroethene	ND		1.00	1	09/30/2020 21:34	WG1551743	
1,2-Dichloropropane	ND		1.00	1	09/30/2020 21:34	WG1551743	
1,1-Dichloropropene	ND		1.00	1	09/30/2020 21:34	WG1551743	
1,3-Dichloropropane	ND		1.00	1	09/30/2020 21:34	WG1551743	
cis-1,3-Dichloropropene	ND		1.00	1	09/30/2020 21:34	WG1551743	
trans-1,3-Dichloropropene	ND		1.00	1	09/30/2020 21:34	WG1551743	
2,2-Dichloropropane	ND		1.00	1	09/30/2020 21:34	WG1551743	
Di-isopropyl ether	ND		1.00	1	09/30/2020 21:34	WG1551743	
Ethylbenzene	ND		1.00	1	09/30/2020 21:34	WG1551743	
					09/30/2020 21:34		
Hexachloro-1,3-butadiene	ND		1.00	1		WG1551743	
Isopropylbenzene	ND		1.00	1	09/30/2020 21:34	WG1551743	
p-lsopropyltoluene	ND		1.00	1	09/30/2020 21:34	WG1551743	
2-Butanone (MEK)	ND		10.0	1	09/30/2020 21:34	WG1551743	
Methylene Chloride	ND		5.00	1	09/30/2020 21:34	WG1551743	
4-Methyl-2-pentanone (MIBK)	ND		10.0	1	09/30/2020 21:34	WG1551743	
Methyl tert-butyl ether	ND		1.00	1	09/30/2020 21:34	WG1551743	
Naphthalene	ND		5.00	1	09/30/2020 21:34	WG1551743	
n-Propylbenzene	ND		1.00	1	09/30/2020 21:34	WG1551743	
Styrene	ND		1.00	1	09/30/2020 21:34	WG1551743	
1,1,1,2-Tetrachloroethane	ND		1.00	1	09/30/2020 21:34	WG1551743	
1,1,2,2-Tetrachloroethane	ND		1.00	1	09/30/2020 21:34	WG1551743	
1,1,2-Trichlorotrifluoroethane	ND		1.00	1	09/30/2020 21:34	WG1551743	
Tetrachloroethene	ND		1.00	1	09/30/2020 21:34	WG1551743	
Toluene	ND		1.00	1	09/30/2020 21:34	WG1551743	
1,2,3-Trichlorobenzene	ND		1.00	1	09/30/2020 21:34	WG1551743	
1,2,4-Trichlorobenzene	ND		1.00	1	09/30/2020 21:34	WG1551743	
	110		1.00		00/00/2020 21.JT	10100110	

SCS Engineers - KS

PROJECT: C4-052-73682 SDG: L1265359

DATE/TIME: 10/05/20 12:26

:: 26 PAGE: 31 of 86

*

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
1,1,1-Trichloroethane	ND		1.00	1	09/30/2020 21:34	WG1551743	²
1,1,2-Trichloroethane	ND		1.00	1	09/30/2020 21:34	WG1551743	
Trichloroethene	ND		1.00	1	09/30/2020 21:34	WG1551743	3
Trichlorofluoromethane	ND		5.00	1	09/30/2020 21:34	<u>WG1551743</u>	35
1,2,3-Trichloropropane	ND		2.50	1	09/30/2020 21:34	WG1551743	
1,2,4-Trimethylbenzene	ND		1.00	1	09/30/2020 21:34	<u>WG1551743</u>	4
1,2,3-Trimethylbenzene	ND		1.00	1	09/30/2020 21:34	WG1551743	
1,3,5-Trimethylbenzene	ND		1.00	1	09/30/2020 21:34	<u>WG1551743</u>	5
Vinyl chloride	ND		1.00	1	09/30/2020 21:34	WG1551743	⁵ S
Xylenes, Total	ND		3.00	1	09/30/2020 21:34	<u>WG1551743</u>	
(S) Toluene-d8	110		80.0-120		09/30/2020 21:34	WG1551743	6
(S) 4-Bromofluorobenzene	102		77.0-126		09/30/2020 21:34	<u>WG1551743</u>	
(S) 1,2-Dichloroethane-d4	94.0		70.0-130		09/30/2020 21:34	WG1551743	70

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

							8
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ĭ
Analyte	ug/l		ug/l		date / time		
MRH (C9-C18)	ND		105	1.05	10/03/2020 12:59	WG1547615	95
HRH (C19-C35)	ND		105	1.05	10/03/2020 12:59	WG1547615	Ĺ
(S) 1-Chloro-octadecane	79.5		40.0-140		10/03/2020 12:59	WG1547615	

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Acenaphthene	ND		1.00	1	09/30/2020 10:01	WG1548770	
Acenaphthylene	ND		1.00	1	09/30/2020 10:01	<u>WG1548770</u>	
Anthracene	ND		1.00	1	09/30/2020 10:01	WG1548770	
Benzidine	ND		10.0	1	09/30/2020 10:01	WG1548770	
Benzo(a)anthracene	ND		1.00	1	09/30/2020 10:01	WG1548770	
Benzo(b)fluoranthene	ND		1.00	1	09/30/2020 10:01	<u>WG1548770</u>	
Benzo(k)fluoranthene	ND		1.00	1	09/30/2020 10:01	WG1548770	
Benzo(g,h,i)perylene	ND		1.00	1	09/30/2020 10:01	<u>WG1548770</u>	
Benzo(a)pyrene	ND		1.00	1	09/30/2020 10:01	WG1548770	
Bis(2-chlorethoxy)methane	ND		10.0	1	09/30/2020 10:01	<u>WG1548770</u>	
Bis(2-chloroethyl)ether	ND		10.0	1	09/30/2020 10:01	<u>WG1548770</u>	
2,2-Oxybis(1-Chloropropane)	ND		10.0	1	09/30/2020 10:01	<u>WG1548770</u>	
4-Bromophenyl-phenylether	ND		10.0	1	09/30/2020 10:01	<u>WG1548770</u>	
2-Chloronaphthalene	ND		1.00	1	09/30/2020 10:01	<u>WG1548770</u>	
4-Chlorophenyl-phenylether	ND		10.0	1	09/30/2020 10:01	<u>WG1548770</u>	
Chrysene	ND		1.00	1	09/30/2020 10:01	<u>WG1548770</u>	
Dibenz(a,h)anthracene	ND		1.00	1	09/30/2020 10:01	<u>WG1548770</u>	
1,2-Dichlorobenzene	ND		10.0	1	09/30/2020 10:01	<u>WG1548770</u>	
1,3-Dichlorobenzene	ND		10.0	1	09/30/2020 10:01	<u>WG1548770</u>	
1,4-Dichlorobenzene	ND		10.0	1	09/30/2020 10:01	<u>WG1548770</u>	
3,3-Dichlorobenzidine	ND		10.0	1	09/30/2020 10:01	<u>WG1548770</u>	
2,4-Dinitrotoluene	ND		10.0	1	09/30/2020 10:01	<u>WG1548770</u>	
2,6-Dinitrotoluene	ND		10.0	1	09/30/2020 10:01	<u>WG1548770</u>	
Fluoranthene	ND		1.00	1	09/30/2020 10:01	<u>WG1548770</u>	
Fluorene	ND		1.00	1	09/30/2020 10:01	<u>WG1548770</u>	
Hexachlorobenzene	ND		1.00	1	09/30/2020 10:01	<u>WG1548770</u>	
Hexachloro-1,3-butadiene	ND		10.0	1	09/30/2020 10:01	WG1548770	
Hexachlorocyclopentadiene	ND		10.0	1	09/30/2020 10:01	WG1548770	
Hexachloroethane	ND		10.0	1	09/30/2020 10:01	WG1548770	
Indeno(1,2,3-cd)pyrene	ND		1.00	1	09/30/2020 10:01	WG1548770	
Isophorone	ND		10.0	1	09/30/2020 10:01	WG1548770	
ACCOUN	_						

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1265359

E 10 PAGE: 32 of 86

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	ug/l		ug/l		date / time		
Naphthalene	ND		1.00	1	09/30/2020 10:01	WG1548770	² Tc
Nitrobenzene	ND		10.0	1	09/30/2020 10:01	WG1548770	
n-Nitrosodimethylamine	ND		10.0	1	09/30/2020 10:01	<u>WG1548770</u>	3
n-Nitrosodiphenylamine	ND		10.0	1	09/30/2020 10:01	WG1548770	Ss
n-Nitrosodi-n-propylamine	ND		10.0	1	09/30/2020 10:01	<u>WG1548770</u>	
Phenanthrene	ND		1.00	1	09/30/2020 10:01	WG1548770	⁴ Cn
Benzylbutyl phthalate	ND		3.00	1	09/30/2020 10:01	<u>WG1548770</u>	
Bis(2-ethylhexyl)phthalate	ND		3.00	1	09/30/2020 10:01	WG1548770	5
Di-n-butyl phthalate	ND		3.00	1	09/30/2020 10:01	<u>WG1548770</u>	ິSr
Diethyl phthalate	ND		3.00	1	09/30/2020 10:01	WG1548770	
Dimethyl phthalate	ND		3.00	1	09/30/2020 10:01	<u>WG1548770</u>	⁶ Qc
Di-n-octyl phthalate	ND		3.00	1	09/30/2020 10:01	WG1548770	
Pyrene	ND		1.00	1	09/30/2020 10:01	<u>WG1548770</u>	7
1,2,4-Trichlorobenzene	ND		10.0	1	09/30/2020 10:01	WG1548770	΄GΙ
4-Chloro-3-methylphenol	ND		10.0	1	09/30/2020 10:01	<u>WG1548770</u>	
2-Chlorophenol	ND		10.0	1	09/30/2020 10:01	WG1548770	⁸ Al
2,4-Dichlorophenol	ND		10.0	1	09/30/2020 10:01	<u>WG1548770</u>	/ 11
2,4-Dimethylphenol	ND		10.0	1	09/30/2020 10:01	WG1548770	9
4,6-Dinitro-2-methylphenol	ND		10.0	1	09/30/2020 10:01	<u>WG1548770</u>	Sc
2,4-Dinitrophenol	ND		10.0	1	09/30/2020 10:01	WG1548770	
2-Nitrophenol	ND		10.0	1	09/30/2020 10:01	<u>WG1548770</u>	
4-Nitrophenol	ND		10.0	1	09/30/2020 10:01	WG1548770	
Pentachlorophenol	ND		10.0	1	09/30/2020 10:01	<u>WG1548770</u>	
Phenol	ND		10.0	1	09/30/2020 10:01	WG1548770	
2,4,6-Trichlorophenol	ND		10.0	1	09/30/2020 10:01	<u>WG1548770</u>	
(S) 2-Fluorophenol	41.1		10.0-120		09/30/2020 10:01	WG1548770	
(S) Phenol-d5	27.5		10.0-120		09/30/2020 10:01	WG1548770	
(S) Nitrobenzene-d5	72.3		10.0-127		09/30/2020 10:01	WG1548770	
(S) 2-Fluorobiphenyl	82.9		10.0-130		09/30/2020 10:01	WG1548770	
(S) 2,4,6-Tribromophenol	76.0		10.0-155		09/30/2020 10:01	WG1548770	
(S) p-Terphenyl-d14	84.7		10.0-128		09/30/2020 10:01	WG1548770	

SDG: L1265359 DATE/TIME: 10/05/20 12:26

SAMPLE RESULTS - 09 L1265359

<u>پو</u>

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
LRH (C5-C8)	ND		100	1	09/30/2020 21:54	WG1551743	ŤΤ
Acetone	ND		50.0	1	09/30/2020 21:54	WG1551743	
Acrylonitrile	ND	JO	10.0	1	09/30/2020 21:54	WG1551743	³ S
Benzene	5.47		1.00	1	09/30/2020 21:54	WG1551743	
Bromobenzene	ND		1.00	1	09/30/2020 21:54	WG1551743	4
Bromodichloromethane	ND		1.00	1	09/30/2020 21:54	WG1551743	Ċ
Bromoform	ND		1.00	1	09/30/2020 21:54	WG1551743	
Bromomethane	ND		5.00	1	09/30/2020 21:54	WG1551743	⁵ S
n-Butylbenzene	ND		1.00	1	09/30/2020 21:54	WG1551743	5
sec-Butylbenzene	ND		1.00	1	09/30/2020 21:54	WG1551743	
tert-Butylbenzene	ND		1.00	1	09/30/2020 21:54	WG1551743	°C
Carbon tetrachloride	ND		1.00	1	09/30/2020 21:54	WG1551743	
Chlorobenzene	3.48		1.00	1	09/30/2020 21:54	WG1551743	7
Chlorodibromomethane	ND		1.00	1	09/30/2020 21:54	WG1551743	í e
Chloroethane	ND		5.00	1	09/30/2020 21:54	WG1551743	
Chloroform	ND		5.00	1	09/30/2020 21:54	WG1551743	A ⁸
	ND		2.50	1	09/30/2020 21:54		
Chloromethane						WG1551743	۵. ۵
2-Chlorotoluene	ND		1.00	1	09/30/2020 21:54	WG1551743	s
4-Chlorotoluene	ND		1.00	1	09/30/2020 21:54	WG1551743	
1,2-Dibromo-3-Chloropropane	ND		5.00	1	09/30/2020 21:54	WG1551743	
1,2-Dibromoethane	ND		1.00	1	09/30/2020 21:54	<u>WG1551743</u>	
Dibromomethane	ND		1.00	1	09/30/2020 21:54	<u>WG1551743</u>	
1,2-Dichlorobenzene	1.80		1.00	1	09/30/2020 21:54	WG1551743	
1,3-Dichlorobenzene	ND		1.00	1	09/30/2020 21:54	WG1551743	
1,4-Dichlorobenzene	2.03		1.00	1	09/30/2020 21:54	WG1551743	
Dichlorodifluoromethane	30.1		5.00	1	09/30/2020 21:54	WG1551743	
1,1-Dichloroethane	ND		1.00	1	09/30/2020 21:54	WG1551743	
1,2-Dichloroethane	ND		1.00	1	09/30/2020 21:54	WG1551743	
1,1-Dichloroethene	ND		1.00	1	09/30/2020 21:54	WG1551743	
cis-1,2-Dichloroethene	ND		1.00	1	09/30/2020 21:54	WG1551743	
trans-1,2-Dichloroethene	ND		1.00	1	09/30/2020 21:54	WG1551743	
1,2-Dichloropropane	ND		1.00	1	09/30/2020 21:54	WG1551743	
1,1-Dichloropropene	ND		1.00	1	09/30/2020 21:54	WG1551743	
1,3-Dichloropropane	ND		1.00	1	09/30/2020 21:54	WG1551743	
cis-1,3-Dichloropropene	ND		1.00	1	09/30/2020 21:54	WG1551743	
trans-1,3-Dichloropropene	ND		1.00	1	09/30/2020 21:54	WG1551743	
2,2-Dichloropropane	ND		1.00	1	09/30/2020 21:54	WG1551743	
Di-isopropyl ether	ND		1.00	1	09/30/2020 21:54	WG1551743	
Ethylbenzene	ND		1.00	1	09/30/2020 21:54	WG1551743	
Hexachloro-1,3-butadiene	ND		1.00	1	09/30/2020 21:54	WG1551743	
Isopropylbenzene	1.53		1.00	1	09/30/2020 21:54	WG1551743	
p-Isopropyltoluene	6.48		1.00	1	09/30/2020 21:54	<u>WG1551743</u>	
2-Butanone (MEK)	ND		10.0	1	09/30/2020 21:54	<u>WG1551743</u>	
Methylene Chloride	ND		5.00	1	09/30/2020 21:54	<u>WG1551743</u>	
4-Methyl-2-pentanone (MIBK)	ND		10.0	1	09/30/2020 21:54	WG1551743	
Methyl tert-butyl ether	ND		1.00	1	09/30/2020 21:54	WG1551743	
Naphthalene	ND		5.00	1	09/30/2020 21:54	WG1551743	
n-Propylbenzene	ND		1.00	1	09/30/2020 21:54	WG1551743	
Styrene	ND		1.00	1	09/30/2020 21:54	WG1551743	
1,1,1,2-Tetrachloroethane	ND		1.00	1	09/30/2020 21:54	WG1551743	
1,1,2,2-Tetrachloroethane	ND		1.00	1	09/30/2020 21:54	WG1551743	
1,1,2-Trichlorotrifluoroethane	ND		1.00	1	09/30/2020 21:54	WG1551743	
Tetrachloroethene	ND		1.00	1	09/30/2020 21:54	WG1551743	
Toluene	ND		1.00	1	09/30/2020 21:54	WG1551743	
1,2,3-Trichlorobenzene	ND		1.00	1	09/30/2020 21:54	WG1551743	
	ND		1.00	1	09/30/2020 21:54	WG1551743	
1,2,4-Trichlorobenzene					JJJJJZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ		

SCS Engineers - KS

PROJECT: C4-052-73682

SDG: L1265359

PAGE: 34 of 86

*

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	C
Analyte	ug/l		ug/l		date / time		
1,1,1-Trichloroethane	ND		1.00	1	09/30/2020 21:54	WG1551743	² T
1,1,2-Trichloroethane	ND		1.00	1	09/30/2020 21:54	WG1551743	
Trichloroethene	ND		1.00	1	09/30/2020 21:54	<u>WG1551743</u>	3
Trichlorofluoromethane	ND		5.00	1	09/30/2020 21:54	<u>WG1551743</u>	³ S
1,2,3-Trichloropropane	ND		2.50	1	09/30/2020 21:54	<u>WG1551743</u>	
1,2,4-Trimethylbenzene	ND		1.00	1	09/30/2020 21:54	<u>WG1551743</u>	⁴ C
1,2,3-Trimethylbenzene	ND		1.00	1	09/30/2020 21:54	<u>WG1551743</u>	Ľ
1,3,5-Trimethylbenzene	ND		1.00	1	09/30/2020 21:54	<u>WG1551743</u>	5
Vinyl chloride	ND		1.00	1	09/30/2020 21:54	<u>WG1551743</u>	⁵S
Xylenes, Total	ND		3.00	1	09/30/2020 21:54	<u>WG1551743</u>	
(S) Toluene-d8	111		80.0-120		09/30/2020 21:54	<u>WG1551743</u>	⁶ G
(S) 4-Bromofluorobenzene	108		77.0-126		09/30/2020 21:54	<u>WG1551743</u>	
(S) 1,2-Dichloroethane-d4	90.8		70.0-130		09/30/2020 21:54	WG1551743	⁷ G

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Å
Analyte	ug/l		ug/l		date / time		
MRH (C9-C18)	1970		100	1	10/03/2020 13:22	WG1547615	°Sc
HRH (C19-C35)	2390		100	1	10/03/2020 13:22	WG1547615	
(S) 1-Chloro-octadecane	94.6		40.0-140		10/03/2020 13:22	WG1547615	

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Acenaphthene	ND		1.00	1	09/30/2020 11:04	WG1548770	
Acenaphthylene	ND		1.00	1	09/30/2020 11:04	<u>WG1548770</u>	
Anthracene	ND		1.00	1	09/30/2020 11:04	WG1548770	
Benzidine	ND		10.0	1	09/30/2020 11:04	WG1548770	
Benzo(a)anthracene	ND		1.00	1	09/30/2020 11:04	WG1548770	
Benzo(b)fluoranthene	ND		1.00	1	09/30/2020 11:04	WG1548770	
Benzo(k)fluoranthene	ND		1.00	1	09/30/2020 11:04	WG1548770	
Benzo(g,h,i)perylene	ND		1.00	1	09/30/2020 11:04	WG1548770	
Benzo(a)pyrene	ND		1.00	1	09/30/2020 11:04	WG1548770	
Bis(2-chlorethoxy)methane	ND		10.0	1	09/30/2020 11:04	<u>WG1548770</u>	
Bis(2-chloroethyl)ether	ND		10.0	1	09/30/2020 11:04	WG1548770	
2,2-Oxybis(1-Chloropropane)	ND		10.0	1	09/30/2020 11:04	<u>WG1548770</u>	
4-Bromophenyl-phenylether	ND		10.0	1	09/30/2020 11:04	WG1548770	
2-Chloronaphthalene	ND		1.00	1	09/30/2020 11:04	<u>WG1548770</u>	
4-Chlorophenyl-phenylether	ND		10.0	1	09/30/2020 11:04	WG1548770	
Chrysene	ND		1.00	1	09/30/2020 11:04	<u>WG1548770</u>	
Dibenz(a,h)anthracene	ND		1.00	1	09/30/2020 11:04	WG1548770	
1,2-Dichlorobenzene	ND		10.0	1	09/30/2020 11:04	<u>WG1548770</u>	
1,3-Dichlorobenzene	ND		10.0	1	09/30/2020 11:04	WG1548770	
1,4-Dichlorobenzene	ND		10.0	1	09/30/2020 11:04	<u>WG1548770</u>	
3,3-Dichlorobenzidine	ND		10.0	1	09/30/2020 11:04	WG1548770	
2,4-Dinitrotoluene	ND		10.0	1	09/30/2020 11:04	WG1548770	
2,6-Dinitrotoluene	ND		10.0	1	09/30/2020 11:04	WG1548770	
Fluoranthene	ND		1.00	1	09/30/2020 11:04	WG1548770	
Fluorene	ND		1.00	1	09/30/2020 11:04	WG1548770	
Hexachlorobenzene	ND		1.00	1	09/30/2020 11:04	WG1548770	
Hexachloro-1,3-butadiene	ND		10.0	1	09/30/2020 11:04	WG1548770	
Hexachlorocyclopentadiene	ND		10.0	1	09/30/2020 11:04	WG1548770	
Hexachloroethane	ND		10.0	1	09/30/2020 11:04	WG1548770	
Indeno(1,2,3-cd)pyrene	ND		1.00	1	09/30/2020 11:04	WG1548770	
Isophorone	ND		10.0	1	09/30/2020 11:04	WG1548770	

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1265359 DATE/TIME: 10/05/20 12:26

*

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	'Ср
Analyte	ug/l		ug/l		date / time	L	
Naphthalene	ND		1.00	1	09/30/2020 11:04	<u>WG1548770</u>	2 Tc
Nitrobenzene	ND		10.0	1	09/30/2020 11:04	WG1548770	
n-Nitrosodimethylamine	ND		10.0	1	09/30/2020 11:04	WG1548770	3
n-Nitrosodiphenylamine	ND		10.0	1	09/30/2020 11:04	WG1548770	ຶSs
n-Nitrosodi-n-propylamine	ND		10.0	1	09/30/2020 11:04	<u>WG1548770</u>	_
Phenanthrene	ND		1.00	1	09/30/2020 11:04	WG1548770	⁴ Cr
Benzylbutyl phthalate	ND		3.00	1	09/30/2020 11:04	<u>WG1548770</u>	<u> </u>
Bis(2-ethylhexyl)phthalate	ND		3.00	1	09/30/2020 11:04	WG1548770	5
Di-n-butyl phthalate	ND		3.00	1	09/30/2020 11:04	WG1548770	്Sr
Diethyl phthalate	ND		3.00	1	09/30/2020 11:04	WG1548770	
Dimethyl phthalate	ND		3.00	1	09/30/2020 11:04	WG1548770	
Di-n-octyl phthalate	ND		3.00	1	09/30/2020 11:04	WG1548770	
Pyrene	ND		1.00	1	09/30/2020 11:04	WG1548770	7
1,2,4-Trichlorobenzene	ND		10.0	1	09/30/2020 11:04	WG1548770	Í GI
4-Chloro-3-methylphenol	ND		10.0	1	09/30/2020 11:04	WG1548770	
2-Chlorophenol	ND		10.0	1	09/30/2020 11:04	WG1548770	⁸ AI
2,4-Dichlorophenol	ND		10.0	1	09/30/2020 11:04	WG1548770	
2,4-Dimethylphenol	ND		10.0	1	09/30/2020 11:04	<u>WG1548770</u>	9
4,6-Dinitro-2-methylphenol	ND		10.0	1	09/30/2020 11:04	<u>WG1548770</u>	Š
2,4-Dinitrophenol	ND		10.0	1	09/30/2020 11:04	<u>WG1548770</u>	
2-Nitrophenol	ND		10.0	1	09/30/2020 11:04	<u>WG1548770</u>	
4-Nitrophenol	ND		10.0	1	09/30/2020 11:04	<u>WG1548770</u>	
Pentachlorophenol	ND		10.0	1	09/30/2020 11:04	WG1548770	
Phenol	ND		10.0	1	09/30/2020 11:04	WG1548770	
2,4,6-Trichlorophenol	ND		10.0	1	09/30/2020 11:04	WG1548770	
(S) 2-Fluorophenol	42.5		10.0-120		09/30/2020 11:04	WG1548770	
(S) Phenol-d5	24.6		10.0-120		09/30/2020 11:04	WG1548770	
(S) Nitrobenzene-d5	84.2		10.0-127		09/30/2020 11:04	WG1548770	
(S) 2-Fluorobiphenyl	86.5		10.0-130		09/30/2020 11:04	WG1548770	
(S) 2,4,6-Tribromophenol	91.8		10.0-155		09/30/2020 11:04	WG1548770	
(S) p-Terphenyl-d14	91.9		10.0-128		09/30/2020 11:04	WG1548770	

SDG: L1265359 DATE/TIME: 10/05/20 12:26

*

Volatile Organic Compounds (GC/MS) by Method 8260D

A 1.	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2_
LRH (C5-C8)	ND		5000	50	09/30/2020 22:52	WG1551743	Ťτ
Acetone	ND		2500	50	09/30/2020 22:52	WG1551743	
Acrylonitrile	ND	JO	500	50	09/30/2020 22:52	WG1551743	³ Ss
Benzene	ND		50.0	50	09/30/2020 22:52	WG1551743	
Bromobenzene	ND		50.0	50	09/30/2020 22:52	WG1551743	4
Bromodichloromethane	ND		50.0	50	09/30/2020 22:52	WG1551743	Cr
Bromoform	ND		50.0	50	09/30/2020 22:52	WG1551743	
Bromomethane	ND		250	50	09/30/2020 22:52	WG1551743	⁵Sr
n-Butylbenzene	128		50.0	50	09/30/2020 22:52	WG1551743	
sec-Butylbenzene	82.3		50.0	50	09/30/2020 22:52	WG1551743	6
tert-Butylbenzene	ND		50.0	50	09/30/2020 22:52	WG1551743	Q
Carbon tetrachloride	ND		50.0	50	09/30/2020 22:52	WG1551743	
Chlorobenzene	ND		50.0	50	09/30/2020 22:52	WG1551743	⁷ Gl
Chlorodibromomethane	ND		50.0	50	09/30/2020 22:52	WG1551743	0
Chloroethane	ND		250	50	09/30/2020 22:52	WG1551743	8
Chloroform	ND		250	50	09/30/2020 22:52	WG1551743	Ă۱
Chloromethane	ND		125	50	09/30/2020 22:52	WG1551743	
2-Chlorotoluene	ND		50.0	50	09/30/2020 22:52	WG1551743	°Sc
4-Chlorotoluene	ND		50.0	50	09/30/2020 22:52	WG1551743	50
1,2-Dibromo-3-Chloropropane	ND		250	50	09/30/2020 22:52	WG1551743	
1,2-Dibromoethane	ND		50.0	50	09/30/2020 22:52	WG1551743	
Dibromomethane	ND		50.0	50	09/30/2020 22:52	WG1551743	
1,2-Dichlorobenzene	ND		50.0	50	09/30/2020 22:52	WG1551743	
1,3-Dichlorobenzene	ND		50.0	50	09/30/2020 22:52	WG1551743	
1,4-Dichlorobenzene	ND		50.0	50	09/30/2020 22:52	WG1551743	
Dichlorodifluoromethane	ND		250	50	09/30/2020 22:52	WG1551743	
1,1-Dichloroethane	ND		50.0	50	09/30/2020 22:52	WG1551743	
1,2-Dichloroethane	ND		50.0	50	09/30/2020 22:52	WG1551743	
1,1-Dichloroethene	ND		50.0	50	09/30/2020 22:52	WG1551743	
cis-1,2-Dichloroethene	ND		50.0	50	09/30/2020 22:52	WG1551743	
trans-1,2-Dichloroethene	ND		50.0	50	09/30/2020 22:52	WG1551743	
1,2-Dichloropropane	ND		50.0	50	09/30/2020 22:52	WG1551743	
1,1-Dichloropropene	ND		50.0	50	09/30/2020 22:52	WG1551743	
1,3-Dichloropropane	ND		50.0	50	09/30/2020 22:52	WG1551743	
	ND		50.0	50	09/30/2020 22:52	WG1551743	
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND		50.0	50	09/30/2020 22:52	WG1551743	
2,2-Dichloropropane	ND		50.0	50	09/30/2020 22:52	WG1551743	
Di-isopropyl ether			50.0		09/30/2020 22:52		
	ND			50		WG1551743	
Ethylbenzene	ND		50.0	50	09/30/2020 22:52	WG1551743	
Hexachloro-1,3-butadiene	ND		50.0	50	09/30/2020 22:52	WG1551743	
Isopropylbenzene	ND		50.0	50	09/30/2020 22:52	WG1551743	
p-lsopropyltoluene	ND		50.0	50	09/30/2020 22:52	WG1551743	
2-Butanone (MEK)	ND		500	50	09/30/2020 22:52	WG1551743	
Methylene Chloride	ND		250	50	09/30/2020 22:52	WG1551743	
4-Methyl-2-pentanone (MIBK)	ND		500	50	09/30/2020 22:52	WG1551743	
Methyl tert-butyl ether	ND		50.0	50	09/30/2020 22:52	WG1551743	
Naphthalene	ND		250	50	09/30/2020 22:52	WG1551743	
n-Propylbenzene	94.7		50.0	50	09/30/2020 22:52	WG1551743	
Styrene	ND		50.0	50	09/30/2020 22:52	<u>WG1551743</u>	
1,1,1,2-Tetrachloroethane	ND		50.0	50	09/30/2020 22:52	<u>WG1551743</u>	
1,1,2,2-Tetrachloroethane	ND		50.0	50	09/30/2020 22:52	<u>WG1551743</u>	
1,1,2-Trichlorotrifluoroethane	ND		50.0	50	09/30/2020 22:52	WG1551743	
	ND		50.0	50	09/30/2020 22:52	WG1551743	
Tetrachloroethene				5.0	09/30/2020 22:52	WG1551743	
Tetrachloroethene Toluene	ND		50.0	50	09/30/2020 22.52	WG1551745	
	ND ND		50.0 50.0	50 50	09/30/2020 22:52	WG1551743	

SCS Engineers - KS

PROJECT: C4-052-73682 SDG: L1265359

1

PAGE: 37 of 86

AI

Sc

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		L
1,1,1-Trichloroethane	ND		50.0	50	09/30/2020 22:52	WG1551743	2
1,1,2-Trichloroethane	ND		50.0	50	09/30/2020 22:52	<u>WG1551743</u>	
Trichloroethene	ND		50.0	50	09/30/2020 22:52	WG1551743	3
Trichlorofluoromethane	ND		250	50	09/30/2020 22:52	<u>WG1551743</u>	3
1,2,3-Trichloropropane	ND		125	50	09/30/2020 22:52	WG1551743	L
1,2,4-Trimethylbenzene	ND		50.0	50	09/30/2020 22:52	<u>WG1551743</u>	4
1,2,3-Trimethylbenzene	ND		50.0	50	09/30/2020 22:52	WG1551743	
1,3,5-Trimethylbenzene	ND		50.0	50	09/30/2020 22:52	<u>WG1551743</u>	5
Vinyl chloride	ND		50.0	50	09/30/2020 22:52	WG1551743	
Xylenes, Total	ND		150	50	09/30/2020 22:52	<u>WG1551743</u>	
(S) Toluene-d8	106		80.0-120		09/30/2020 22:52	WG1551743	e
(S) 4-Bromofluorobenzene	109		77.0-126		09/30/2020 22:52	WG1551743	
(S) 1,2-Dichloroethane-d4	98.9		70.0-130		09/30/2020 22:52	<u>WG1551743</u>	7

Sample Narrative:

L1265359-10 WG1551743: Lowest possible dilution due to sample matrix.

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
MRH (C9-C18)	247000		7150	71.5	10/05/2020 02:35	WG1547615
HRH (C19-C35)	94600		7150	71.5	10/05/2020 02:35	WG1547615
(S) 1-Chloro-octadecane	0.000	<u>J7</u>	40.0-140		10/05/2020 02:35	WG1547615

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Acenaphthene	66.3		20.0	20	09/30/2020 18:03	WG1548770
Acenaphthylene	ND		20.0	20	09/30/2020 18:03	WG1548770
Anthracene	ND		20.0	20	09/30/2020 18:03	WG1548770
Benzidine	ND		200	20	09/30/2020 18:03	WG1548770
Benzo(a)anthracene	ND		20.0	20	09/30/2020 18:03	WG1548770
Benzo(b)fluoranthene	ND		20.0	20	09/30/2020 18:03	WG1548770
Benzo(k)fluoranthene	ND		20.0	20	09/30/2020 18:03	WG1548770
Benzo(g,h,i)perylene	ND		20.0	20	09/30/2020 18:03	WG1548770
Benzo(a)pyrene	ND		20.0	20	09/30/2020 18:03	WG1548770
Bis(2-chlorethoxy)methane	ND		200	20	09/30/2020 18:03	WG1548770
Bis(2-chloroethyl)ether	ND		200	20	09/30/2020 18:03	WG1548770
2,2-Oxybis(1-Chloropropane)	ND		200	20	09/30/2020 18:03	WG1548770
4-Bromophenyl-phenylether	ND		200	20	09/30/2020 18:03	WG1548770
2-Chloronaphthalene	ND		20.0	20	09/30/2020 18:03	WG1548770
4-Chlorophenyl-phenylether	ND		200	20	09/30/2020 18:03	WG1548770
Chrysene	ND		20.0	20	09/30/2020 18:03	WG1548770
Dibenz(a,h)anthracene	ND		20.0	20	09/30/2020 18:03	WG1548770
1,2-Dichlorobenzene	ND		200	20	09/30/2020 18:03	WG1548770
1,3-Dichlorobenzene	ND		200	20	09/30/2020 18:03	WG1548770
1,4-Dichlorobenzene	ND		200	20	09/30/2020 18:03	WG1548770
3,3-Dichlorobenzidine	ND		200	20	09/30/2020 18:03	WG1548770
2,4-Dinitrotoluene	ND		200	20	09/30/2020 18:03	WG1548770
2,6-Dinitrotoluene	ND		200	20	09/30/2020 18:03	WG1548770
Fluoranthene	ND		20.0	20	09/30/2020 18:03	WG1548770
Fluorene	62.0		20.0	20	09/30/2020 18:03	WG1548770
Hexachlorobenzene	ND		20.0	20	09/30/2020 18:03	WG1548770
Hexachloro-1,3-butadiene	ND		200	20	09/30/2020 18:03	WG1548770
Hexachlorocyclopentadiene	ND		200	20	09/30/2020 18:03	WG1548770

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1265359 DATE/TIME: 10/05/20 12:26

*

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	- ľ C
Analyte	ug/l		ug/l		date / time	-	
Hexachloroethane	ND		200	20	09/30/2020 18:03	WG1548770	² T
Indeno(1,2,3-cd)pyrene	ND		20.0	20	09/30/2020 18:03	WG1548770	
Isophorone	ND		200	20	09/30/2020 18:03	WG1548770	3
Naphthalene	ND		20.0	20	09/30/2020 18:03	WG1548770	ິິ
Nitrobenzene	ND		200	20	09/30/2020 18:03	WG1548770	
n-Nitrosodimethylamine	ND		200	20	09/30/2020 18:03	WG1548770	4
n-Nitrosodiphenylamine	ND		200	20	09/30/2020 18:03	WG1548770	
n-Nitrosodi-n-propylamine	ND		200	20	09/30/2020 18:03	WG1548770	5
Phenanthrene	199		20.0	20	09/30/2020 18:03	WG1548770	ິS
Benzylbutyl phthalate	ND		60.0	20	09/30/2020 18:03	WG1548770	
Bis(2-ethylhexyl)phthalate	ND		60.0	20	09/30/2020 18:03	WG1548770	6 (
Di-n-butyl phthalate	ND		60.0	20	09/30/2020 18:03	WG1548770	
Diethyl phthalate	ND		60.0	20	09/30/2020 18:03	WG1548770	7
Dimethyl phthalate	ND		60.0	20	09/30/2020 18:03	WG1548770	Í Ó
Di-n-octyl phthalate	ND		60.0	20	09/30/2020 18:03	WG1548770	
Pyrene	ND		20.0	20	09/30/2020 18:03	WG1548770	8
1,2,4-Trichlorobenzene	ND		200	20	09/30/2020 18:03	WG1548770	- ^
4-Chloro-3-methylphenol	ND		200	20	09/30/2020 18:03	WG1548770	9
2-Chlorophenol	ND		200	20	09/30/2020 18:03	WG1548770	95
2,4-Dichlorophenol	ND		200	20	09/30/2020 18:03	WG1548770	
2,4-Dimethylphenol	ND		200	20	09/30/2020 18:03	WG1548770	
4,6-Dinitro-2-methylphenol	ND		200	20	09/30/2020 18:03	WG1548770	
2,4-Dinitrophenol	ND		200	20	09/30/2020 18:03	WG1548770	
2-Nitrophenol	ND		200	20	09/30/2020 18:03	WG1548770	
4-Nitrophenol	ND		200	20	09/30/2020 18:03	WG1548770	
Pentachlorophenol	ND		200	20	09/30/2020 18:03	WG1548770	
Phenol	ND		200	20	09/30/2020 18:03	WG1548770	
2,4,6-Trichlorophenol	ND		200	20	09/30/2020 18:03	WG1548770	
(S) 2-Fluorophenol	33.4	<u>J7</u>	10.0-120		09/30/2020 18:03	WG1548770	
(S) Phenol-d5	0.000	J7	10.0-120		09/30/2020 18:03	WG1548770	
(S) Nitrobenzene-d5	0.000	J7	10.0-127		09/30/2020 18:03	WG1548770	
(S) 2-Fluorobiphenyl	66.8	J7	10.0-130		09/30/2020 18:03	WG1548770	
(S) 2,4,6-Tribromophenol	50.6	<u>J7</u>	10.0-155		09/30/2020 18:03	WG1548770	
(S) p-Terphenyl-d14	62.7	J7	10.0-128		09/30/2020 18:03	WG1548770	

Sample Narrative:

L1265359-10 WG1548770: Dilution due to matrix.

SDG: L1265359

₩

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
_RH (C5-C8)	ND		100	1	09/30/2020 22:13	WG1551743	2.
Acetone	ND		50.0	1	09/30/2020 22:13	WG1551743	
Acrylonitrile	ND	JO	10.0	1	09/30/2020 22:13	WG1551743	3
Benzene	4.44		1.00	1	09/30/2020 22:13	WG1551743	
Bromobenzene	ND		1.00	1	09/30/2020 22:13	WG1551743	4
Bromodichloromethane	ND		1.00	1	09/30/2020 22:13	WG1551743	Ĩ
Bromoform	ND		1.00	1	09/30/2020 22:13	WG1551743	
Bromomethane	ND		5.00	1	09/30/2020 22:13	WG1551743	5
n-Butylbenzene	ND		1.00	1	09/30/2020 22:13	WG1551743	
sec-Butylbenzene	ND		1.00	1	09/30/2020 22:13	WG1551743	
tert-Butylbenzene	ND		1.00	1	09/30/2020 22:13	WG1551743	6
Carbon tetrachloride	ND		1.00	1	09/30/2020 22:13	WG1551743	
Chlorobenzene	ND		1.00	1	09/30/2020 22:13	WG1551743	7
Chlorodibromomethane	ND		1.00	1	09/30/2020 22:13	WG1551743	Í (
Chloroethane	ND		5.00	1	09/30/2020 22:13	WG1551743	
							8
Chloroform	ND		5.00	1	09/30/2020 22:13	WG1551743	· · · · · · · · · · · · · · · · · · ·
Chloromethane	ND		2.50	1	09/30/2020 22:13	WG1551743	
2-Chlorotoluene	ND		1.00	1	09/30/2020 22:13	WG1551743	9
4-Chlorotoluene	ND		1.00	1	09/30/2020 22:13	WG1551743	L
l,2-Dibromo-3-Chloropropane	ND		5.00	1	09/30/2020 22:13	WG1551743	
l,2-Dibromoethane	ND		1.00	1	09/30/2020 22:13	<u>WG1551743</u>	
Dibromomethane	ND		1.00	1	09/30/2020 22:13	WG1551743	
1,2-Dichlorobenzene	ND		1.00	1	09/30/2020 22:13	WG1551743	
l,3-Dichlorobenzene	ND		1.00	1	09/30/2020 22:13	WG1551743	
I,4-Dichlorobenzene	ND		1.00	1	09/30/2020 22:13	WG1551743	
Dichlorodifluoromethane	ND		5.00	1	09/30/2020 22:13	<u>WG1551743</u>	
I,1-Dichloroethane	ND		1.00	1	09/30/2020 22:13	WG1551743	
I,2-Dichloroethane	ND		1.00	1	09/30/2020 22:13	WG1551743	
l,1-Dichloroethene	ND		1.00	1	09/30/2020 22:13	WG1551743	
cis-1,2-Dichloroethene	ND		1.00	1	09/30/2020 22:13	WG1551743	
trans-1,2-Dichloroethene	ND		1.00	1	09/30/2020 22:13	WG1551743	
1,2-Dichloropropane	ND		1.00	1	09/30/2020 22:13	WG1551743	
1,1-Dichloropropene	ND		1.00	1	09/30/2020 22:13	WG1551743	
1,3-Dichloropropane	ND		1.00	1	09/30/2020 22:13	WG1551743	
cis-1,3-Dichloropropene	ND		1.00	1	09/30/2020 22:13	WG1551743	
trans-1,3-Dichloropropene	ND		1.00	1	09/30/2020 22:13	WG1551743	
2,2-Dichloropropane	ND		1.00	1	09/30/2020 22:13	WG1551743	
Di-isopropyl ether	ND		1.00	1	09/30/2020 22:13	WG1551743	
	ND		1.00	1	09/30/2020 22:13		
Ethylbenzene						WG1551743	
Hexachloro-1,3-butadiene	ND		1.00	1	09/30/2020 22:13	WG1551743	
sopropylbenzene	2.58		1.00	1	09/30/2020 22:13	WG1551743	
p-lsopropyltoluene	ND		1.00	1	09/30/2020 22:13	WG1551743	
2-Butanone (MEK)	ND		10.0	1	09/30/2020 22:13	WG1551743	
Methylene Chloride	ND		5.00	1	09/30/2020 22:13	WG1551743	
4-Methyl-2-pentanone (MIBK)	ND		10.0	1	09/30/2020 22:13	<u>WG1551743</u>	
Methyl tert-butyl ether	ND		1.00	1	09/30/2020 22:13	WG1551743	
Naphthalene	ND		5.00	1	09/30/2020 22:13	WG1551743	
n-Propylbenzene	2.40		1.00	1	09/30/2020 22:13	<u>WG1551743</u>	
Styrene	ND		1.00	1	09/30/2020 22:13	WG1551743	
,1,1,2-Tetrachloroethane	ND		1.00	1	09/30/2020 22:13	WG1551743	
,1,2,2-Tetrachloroethane	ND		1.00	1	09/30/2020 22:13	WG1551743	
I,1,2-Trichlorotrifluoroethane	ND		1.00	1	09/30/2020 22:13	WG1551743	
Tetrachloroethene	ND		1.00	1	09/30/2020 22:13	WG1551743	
Toluene	ND		1.00	1	09/30/2020 22:13	WG1551743	
1,2,3-Trichlorobenzene	ND		1.00	1	09/30/2020 22:13	WG1551743	
1,2,4-Trichlorobenzene	ND		1.00	1	09/30/2020 22:13	WG1551743	
					20,00,2020 22.10		

SCS Engineers - KS

PROJECT: C4-052-73682

L1265359

10

PAGE: 40 of 86

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	— [`C
Analyte	ug/l		ug/l		date / time		
1,1,1-Trichloroethane	ND		1.00	1	09/30/2020 22:13	WG1551743	²
1,1,2-Trichloroethane	ND		1.00	1	09/30/2020 22:13	WG1551743	
Trichloroethene	ND		1.00	1	09/30/2020 22:13	WG1551743	3
Trichlorofluoromethane	ND		5.00	1	09/30/2020 22:13	WG1551743	3
1,2,3-Trichloropropane	ND		2.50	1	09/30/2020 22:13	WG1551743	
1,2,4-Trimethylbenzene	ND		1.00	1	09/30/2020 22:13	WG1551743	4
1,2,3-Trimethylbenzene	ND		1.00	1	09/30/2020 22:13	WG1551743	Ľ
1,3,5-Trimethylbenzene	ND		1.00	1	09/30/2020 22:13	WG1551743	5
Vinyl chloride	ND		1.00	1	09/30/2020 22:13	WG1551743	5
Xylenes, Total	ND		3.00	1	09/30/2020 22:13	WG1551743	
(S) Toluene-d8	108		80.0-120		09/30/2020 22:13	WG1551743	6
(S) 4-Bromofluorobenzene	103		77.0-126		09/30/2020 22:13	WG1551743	Ľ
(S) 1,2-Dichloroethane-d4	91.2		70.0-130		09/30/2020 22:13	<u>WG1551743</u>	7

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

	Result	Qualifier	RDL	Dilution	Analysis	Batch	IA [®]
Analyte	ug/l		ug/l		date / time		
MRH (C9-C18)	286		100	1	10/03/2020 13:44	WG1547615	°SC
HRH (C19-C35)	817		100	1	10/03/2020 13:44	WG1547615	50
(S) 1-Chloro-octadecane	76.3		40.0-140		10/03/2020 13:44	WG1547615	

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Acenaphthene	ND		1.00	1	09/30/2020 11:25	WG1548770	
Acenaphthylene	ND		1.00	1	09/30/2020 11:25	<u>WG1548770</u>	
Anthracene	ND		1.00	1	09/30/2020 11:25	WG1548770	
Benzidine	ND		10.0	1	09/30/2020 11:25	WG1548770	
Benzo(a)anthracene	ND		1.00	1	09/30/2020 11:25	WG1548770	
Benzo(b)fluoranthene	ND		1.00	1	09/30/2020 11:25	<u>WG1548770</u>	
Benzo(k)fluoranthene	ND		1.00	1	09/30/2020 11:25	WG1548770	
Benzo(g,h,i)perylene	ND		1.00	1	09/30/2020 11:25	<u>WG1548770</u>	
Benzo(a)pyrene	ND		1.00	1	09/30/2020 11:25	WG1548770	
Bis(2-chlorethoxy)methane	ND		10.0	1	09/30/2020 11:25	<u>WG1548770</u>	
Bis(2-chloroethyl)ether	ND		10.0	1	09/30/2020 11:25	WG1548770	
2,2-Oxybis(1-Chloropropane)	ND		10.0	1	09/30/2020 11:25	<u>WG1548770</u>	
4-Bromophenyl-phenylether	ND		10.0	1	09/30/2020 11:25	WG1548770	
2-Chloronaphthalene	ND		1.00	1	09/30/2020 11:25	WG1548770	
4-Chlorophenyl-phenylether	ND		10.0	1	09/30/2020 11:25	WG1548770	
Chrysene	ND		1.00	1	09/30/2020 11:25	WG1548770	
Dibenz(a,h)anthracene	ND		1.00	1	09/30/2020 11:25	WG1548770	
1,2-Dichlorobenzene	ND		10.0	1	09/30/2020 11:25	WG1548770	
1,3-Dichlorobenzene	ND		10.0	1	09/30/2020 11:25	WG1548770	
1,4-Dichlorobenzene	ND		10.0	1	09/30/2020 11:25	<u>WG1548770</u>	
3,3-Dichlorobenzidine	ND		10.0	1	09/30/2020 11:25	WG1548770	
2,4-Dinitrotoluene	ND		10.0	1	09/30/2020 11:25	<u>WG1548770</u>	
2,6-Dinitrotoluene	ND		10.0	1	09/30/2020 11:25	WG1548770	
Fluoranthene	ND		1.00	1	09/30/2020 11:25	<u>WG1548770</u>	
Fluorene	ND		1.00	1	09/30/2020 11:25	WG1548770	
Hexachlorobenzene	ND		1.00	1	09/30/2020 11:25	WG1548770	
Hexachloro-1,3-butadiene	ND		10.0	1	09/30/2020 11:25	WG1548770	
Hexachlorocyclopentadiene	ND		10.0	1	09/30/2020 11:25	WG1548770	
Hexachloroethane	ND		10.0	1	09/30/2020 11:25	WG1548770	
Indeno(1,2,3-cd)pyrene	ND		1.00	1	09/30/2020 11:25	WG1548770	
Isophorone	ND		10.0	1	09/30/2020 11:25	<u>WG1548770</u>	

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1265359 DATE/TIME: 10/05/20 12:26 PAGE: 41 of 86

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	— [ˈC
Analyte	ug/l		ug/l		date / time		
Naphthalene	ND		1.00	1	09/30/2020 11:25	WG1548770	² T
Nitrobenzene	ND		10.0	1	09/30/2020 11:25	WG1548770	
n-Nitrosodimethylamine	ND		10.0	1	09/30/2020 11:25	WG1548770	3
n-Nitrosodiphenylamine	ND		10.0	1	09/30/2020 11:25	WG1548770	°S
n-Nitrosodi-n-propylamine	ND		10.0	1	09/30/2020 11:25	<u>WG1548770</u>	
Phenanthrene	ND		1.00	1	09/30/2020 11:25	WG1548770	⁴ C
Benzylbutyl phthalate	ND		3.00	1	09/30/2020 11:25	WG1548770	
Bis(2-ethylhexyl)phthalate	6.07		3.00	1	09/30/2020 11:25	WG1548770	5
Di-n-butyl phthalate	ND		3.00	1	09/30/2020 11:25	WG1548770	ັS
Diethyl phthalate	ND		3.00	1	09/30/2020 11:25	WG1548770	
Dimethyl phthalate	ND		3.00	1	09/30/2020 11:25	WG1548770	6 (
Di-n-octyl phthalate	ND		3.00	1	09/30/2020 11:25	WG1548770	
Pyrene	ND		1.00	1	09/30/2020 11:25	WG1548770	7
1,2,4-Trichlorobenzene	ND		10.0	1	09/30/2020 11:25	WG1548770	í G
4-Chloro-3-methylphenol	ND		10.0	1	09/30/2020 11:25	WG1548770	
2-Chlorophenol	ND		10.0	1	09/30/2020 11:25	WG1548770	⁸ A
2,4-Dichlorophenol	ND		10.0	1	09/30/2020 11:25	WG1548770	/
2,4-Dimethylphenol	ND		10.0	1	09/30/2020 11:25	WG1548770	9
4,6-Dinitro-2-methylphenol	ND		10.0	1	09/30/2020 11:25	<u>WG1548770</u>	ٌS
2,4-Dinitrophenol	ND		10.0	1	09/30/2020 11:25	WG1548770	
2-Nitrophenol	ND		10.0	1	09/30/2020 11:25	WG1548770	
4-Nitrophenol	ND		10.0	1	09/30/2020 11:25	WG1548770	
Pentachlorophenol	ND		10.0	1	09/30/2020 11:25	WG1548770	
Phenol	ND		10.0	1	09/30/2020 11:25	WG1548770	
2,4,6-Trichlorophenol	ND		10.0	1	09/30/2020 11:25	WG1548770	
(S) 2-Fluorophenol	40.9		10.0-120		09/30/2020 11:25	WG1548770	
(S) Phenol-d5	25.3		10.0-120		09/30/2020 11:25	WG1548770	
(S) Nitrobenzene-d5	68.2		10.0-127		09/30/2020 11:25	WG1548770	
(S) 2-Fluorobiphenyl	72.6		10.0-130		09/30/2020 11:25	WG1548770	
(S) 2,4,6-Tribromophenol	78.5		10.0-155		09/30/2020 11:25	WG1548770	
(S) p-Terphenyl-d14	88.4		10.0-128		09/30/2020 11:25	WG1548770	

SDG: L1265359 DATE/TIME: 10/05/20 12:26

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
Acetone	ND		50.0	1	10/01/2020 00:48	WG1551766	2.
Acrolein	ND	<u>JO</u>	50.0	1	10/01/2020 00:48	WG1551766	
Acrylonitrile	ND		10.0	1	10/01/2020 00:48	WG1551766	3
Benzene	ND		1.00	1	10/01/2020 00:48	WG1551766	
Bromobenzene	ND		1.00	1	10/01/2020 00:48	WG1551766	4
Bromodichloromethane	ND		1.00	1	10/01/2020 00:48	WG1551766	i i i
Bromoform	ND		1.00	1	10/01/2020 00:48	WG1551766	L
Bromomethane	ND		5.00	1	10/01/2020 00:48	WG1551766	5
n-Butylbenzene	ND		1.00	1	10/01/2020 00:48	WG1551766	
sec-Butylbenzene	ND		1.00	1	10/01/2020 00:48	WG1551766	G
ert-Butylbenzene	ND		1.00	1	10/01/2020 00:48	WG1551766	0
Carbon tetrachloride	ND		1.00	1	10/01/2020 00:48	WG1551766	L
Chlorobenzene	ND		1.00	1	10/01/2020 00:48	WG1551766	7
Chlorodibromomethane	ND		1.00	1	10/01/2020 00:48	WG1551766	<u> </u>
Chloroethane	ND		5.00	1	10/01/2020 00:48	WG1551766	
Chloroform	ND		5.00	1	10/01/2020 00:48	WG1551766	8
Chloromethane	ND		2.50	1	10/01/2020 00:48	WG1551766	
							۵
2-Chlorotoluene	ND		1.00	1	10/01/2020 00:48	WG1551766	9
1-Chlorotoluene	ND		1.00	1	10/01/2020 00:48	WG1551766	L
,2-Dibromo-3-Chloropropane	ND		5.00	1	10/01/2020 00:48	WG1551766	
,2-Dibromoethane	ND		1.00	1	10/01/2020 00:48	WG1551766	
Dibromomethane	ND		1.00	1	10/01/2020 00:48	<u>WG1551766</u>	
,2-Dichlorobenzene	ND		1.00	1	10/01/2020 00:48	<u>WG1551766</u>	
,3-Dichlorobenzene	ND		1.00	1	10/01/2020 00:48	WG1551766	
,4-Dichlorobenzene	ND		1.00	1	10/01/2020 00:48	WG1551766	
Dichlorodifluoromethane	ND		5.00	1	10/01/2020 00:48	WG1551766	
,1-Dichloroethane	ND		1.00	1	10/01/2020 00:48	WG1551766	
,2-Dichloroethane	ND		1.00	1	10/01/2020 00:48	WG1551766	
,1-Dichloroethene	ND		1.00	1	10/01/2020 00:48	WG1551766	
cis-1,2-Dichloroethene	ND		1.00	1	10/01/2020 00:48	WG1551766	
rans-1,2-Dichloroethene	ND		1.00	1	10/01/2020 00:48	WG1551766	
,2-Dichloropropane	ND		1.00	1	10/01/2020 00:48	WG1551766	
,1-Dichloropropene	ND		1.00	1	10/01/2020 00:48	WG1551766	
,3-Dichloropropane	ND		1.00	1	10/01/2020 00:48	WG1551766	
cis-1,3-Dichloropropene	ND		1.00	1	10/01/2020 00:48	WG1551766	
rans-1,3-Dichloropropene	ND		1.00	1	10/01/2020 00:48	WG1551766	
2,2-Dichloropropane	ND		1.00	1	10/01/2020 00:48	WG1551766	
Di-isopropyl ether	ND		1.00	1	10/01/2020 00:48	WG1551766	
Ethylbenzene	ND		1.00	1	10/01/2020 00:48	WG1551766	
Hexachloro-1,3-butadiene	ND		1.00	1	10/01/2020 00:48	WG1551766	
sopropylbenzene	ND		1.00	1	10/01/2020 00:48	WG1551766	
p-lsopropyltoluene	ND		1.00	1	10/01/2020 00:48	WG1551766	
2-Butanone (MEK)	ND		10.0		10/01/2020 00:48		
				1		WG1551766	
Methylene Chloride	ND		5.00	1	10/01/2020 00:48	WG1551766	
I-Methyl-2-pentanone (MIBK)	ND		10.0	1	10/01/2020 00:48	WG1551766	
Methyl tert-butyl ether	ND		1.00	1	10/01/2020 00:48	WG1551766	
Naphthalene	ND		5.00	1	10/01/2020 00:48	WG1551766	
n-Propylbenzene	ND		1.00	1	10/01/2020 00:48	WG1551766	
Styrene	ND		1.00	1	10/01/2020 00:48	<u>WG1551766</u>	
,1,1,2-Tetrachloroethane	ND		1.00	1	10/01/2020 00:48	<u>WG1551766</u>	
,1,2,2-Tetrachloroethane	ND		1.00	1	10/01/2020 00:48	WG1551766	
,1,2-Trichlorotrifluoroethane	ND		1.00	1	10/01/2020 00:48	WG1551766	
Fetrachloroethene	ND		1.00	1	10/01/2020 00:48	<u>WG1551766</u>	
Toluene	ND		1.00	1	10/01/2020 00:48	WG1551766	
	ND		1.00	1	10/01/2020 00:48	WG1551766	
,2,3-Trichlorobenzene	ND						

SCS Engineers - KS

PROJECT: C4-052-73682

L1265359

L 10.

10/05/20 12:26

PAGE: 43 of 86

TRIP BLANK 1 collected date/time: 09/21/20 00:00

SAMPLE RESULTS - 12

Â

Sc

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
1,1,1-Trichloroethane	ND		1.00	1	10/01/2020 00:48	WG1551766	² T
1,1,2-Trichloroethane	ND		1.00	1	10/01/2020 00:48	<u>WG1551766</u>	
Trichloroethene	ND		1.00	1	10/01/2020 00:48	<u>WG1551766</u>	3
Trichlorofluoromethane	ND		5.00	1	10/01/2020 00:48	<u>WG1551766</u>	35
1,2,3-Trichloropropane	ND		2.50	1	10/01/2020 00:48	<u>WG1551766</u>	
1,2,4-Trimethylbenzene	ND		1.00	1	10/01/2020 00:48	<u>WG1551766</u>	4
1,2,3-Trimethylbenzene	ND		1.00	1	10/01/2020 00:48	<u>WG1551766</u>	
1,3,5-Trimethylbenzene	ND		1.00	1	10/01/2020 00:48	<u>WG1551766</u>	5
Vinyl chloride	ND		1.00	1	10/01/2020 00:48	<u>WG1551766</u>	55
Xylenes, Total	ND		3.00	1	10/01/2020 00:48	<u>WG1551766</u>	
(S) Toluene-d8	109		80.0-120		10/01/2020 00:48	<u>WG1551766</u>	6
(S) 4-Bromofluorobenzene	102		77.0-126		10/01/2020 00:48	WG1551766	
(S) 1,2-Dichloroethane-d4	95.6		70.0-130		10/01/2020 00:48	WG1551766	7

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1265359

PAGE: 44 of 86

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l		date / time		2
Acetone	ND		50.0	1	10/01/2020 01:07	WG1551766	² Tc
Acrolein	ND	JO	50.0	1	10/01/2020 01:07	WG1551766	
Acrylonitrile	ND		10.0	1	10/01/2020 01:07	WG1551766	³ Ss
Benzene	ND		1.00	1	10/01/2020 01:07	WG1551766	0.0
Bromobenzene	ND		1.00	1	10/01/2020 01:07	WG1551766	4
Bromodichloromethane	ND		1.00	1	10/01/2020 01:07	WG1551766	Cn
Bromoform	ND		1.00	1	10/01/2020 01:07	WG1551766	
Bromomethane	ND		5.00	1	10/01/2020 01:07	WG1551766	⁵ Sr
n-Butylbenzene	ND		1.00	1	10/01/2020 01:07	WG1551766	
sec-Butylbenzene	ND		1.00	1	10/01/2020 01:07	WG1551766	6
tert-Butylbenzene	ND		1.00	1	10/01/2020 01:07	WG1551766	ČQC
Carbon tetrachloride	ND		1.00	1	10/01/2020 01:07	WG1551766	
Chlorobenzene	ND		1.00	1	10/01/2020 01:07	WG1551766	⁷ Gl
Chlorodibromomethane	ND		1.00	1	10/01/2020 01:07	WG1551766	
Chloroethane	ND		5.00	1	10/01/2020 01:07	WG1551766	8
Chloroform	ND		5.00	1	10/01/2020 01:07	WG1551766	ĬAĬ
Chloromethane	ND		2.50	1	10/01/2020 01:07	WG1551766	
2-Chlorotoluene	ND		1.00	1	10/01/2020 01:07	WG1551766	⁹ Sc
4-Chlorotoluene	ND		1.00	1	10/01/2020 01:07	WG1551766	50
1,2-Dibromo-3-Chloropropane	ND		5.00	1	10/01/2020 01:07	WG1551766	
1,2-Dibromoethane	ND		1.00	1	10/01/2020 01:07	WG1551766	
Dibromomethane	ND		1.00	1	10/01/2020 01:07	WG1551766	
1,2-Dichlorobenzene	ND		1.00	1	10/01/2020 01:07	WG1551766	
1,3-Dichlorobenzene	ND		1.00	1	10/01/2020 01:07	WG1551766	
1,4-Dichlorobenzene	ND		1.00	1	10/01/2020 01:07	WG1551766	
Dichlorodifluoromethane	ND		5.00	1	10/01/2020 01:07	WG1551766	
1,1-Dichloroethane	ND		1.00	1	10/01/2020 01:07	WG1551766	
1,2-Dichloroethane	ND		1.00	1	10/01/2020 01:07	WG1551766	
1,1-Dichloroethene	ND		1.00	1	10/01/2020 01:07	WG1551766	
cis-1,2-Dichloroethene	ND		1.00	1	10/01/2020 01:07	WG1551766	
trans-1,2-Dichloroethene	ND		1.00	1	10/01/2020 01:07	WG1551766	
1,2-Dichloropropane	ND		1.00	1	10/01/2020 01:07	WG1551766	
1,1-Dichloropropene	ND		1.00	1	10/01/2020 01:07	WG1551766	
1,3-Dichloropropane	ND		1.00	1	10/01/2020 01:07	WG1551766	
cis-1,3-Dichloropropene	ND		1.00	1	10/01/2020 01:07	WG1551766	
trans-1,3-Dichloropropene	ND		1.00	1	10/01/2020 01:07	WG1551766	
2,2-Dichloropropane	ND		1.00	1	10/01/2020 01:07	WG1551766	
Di-isopropyl ether	ND		1.00	1	10/01/2020 01:07	WG1551766	
Ethylbenzene	ND		1.00	1	10/01/2020 01:07	WG1551766	
Hexachloro-1,3-butadiene	ND		1.00	1	10/01/2020 01:07	WG1551766	
Isopropylbenzene	ND		1.00	1	10/01/2020 01:07	WG1551766	
p-lsopropyltoluene	ND		1.00	1	10/01/2020 01:07	WG1551766	
2-Butanone (MEK)	ND		10.0	1	10/01/2020 01:07	WG1551766	
Methylene Chloride	ND		5.00	1	10/01/2020 01:07	WG1551766	
4-Methyl-2-pentanone (MIBK)	ND		10.0	1	10/01/2020 01:07	WG1551766	
Methyl tert-butyl ether	ND		1.00	1	10/01/2020 01:07	WG1551766	
Naphthalene	ND		5.00	1	10/01/2020 01:07	WG1551766	
n-Propylbenzene	ND		1.00	1	10/01/2020 01:07	WG1551766	
Styrene	ND		1.00	1	10/01/2020 01:07	WG1551766	
1,1,1,2-Tetrachloroethane	ND		1.00	1	10/01/2020 01:07	WG1551766	
I,1,2,2-Tetrachloroethane	ND		1.00	1	10/01/2020 01:07	WG1551766	
1,1,2-Trichlorotrifluoroethane	ND		1.00	1	10/01/2020 01:07	WG1551766	
Tetrachloroethene	ND		1.00	1	10/01/2020 01:07	WG1551766	
Toluene	ND		1.00	1	10/01/2020 01:07	WG1551766	
1,2,3-Trichlorobenzene	ND		1.00	1	10/01/2020 01:07		
1,2,3-Trichlorobenzene						WG1551766	
LZ →=111C11101000000000000	ND		1.00	1	10/01/2020 01:07	WG1551766	

C4-052-73682

SCS Engineers - KS

L1265359

PAGE: 45 of 86

TRIP BLANK 2 collected date/time: 09/21/20 00:00

SAMPLE RESULTS - 13

ΆI

Sc

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	ľ
Analyte	ug/l		ug/l		date / time		L
1,1,1-Trichloroethane	ND		1.00	1	10/01/2020 01:07	WG1551766	2
1,1,2-Trichloroethane	ND		1.00	1	10/01/2020 01:07	<u>WG1551766</u>	
Trichloroethene	ND		1.00	1	10/01/2020 01:07	<u>WG1551766</u>	3
Trichlorofluoromethane	ND		5.00	1	10/01/2020 01:07	<u>WG1551766</u>	3
1,2,3-Trichloropropane	ND		2.50	1	10/01/2020 01:07	WG1551766	L
1,2,4-Trimethylbenzene	ND		1.00	1	10/01/2020 01:07	<u>WG1551766</u>	4
1,2,3-Trimethylbenzene	ND		1.00	1	10/01/2020 01:07	WG1551766	
1,3,5-Trimethylbenzene	ND		1.00	1	10/01/2020 01:07	<u>WG1551766</u>	5
Vinyl chloride	ND		1.00	1	10/01/2020 01:07	WG1551766	5
Xylenes, Total	ND		3.00	1	10/01/2020 01:07	<u>WG1551766</u>	
(S) Toluene-d8	112		80.0-120		10/01/2020 01:07	WG1551766	6
(S) 4-Bromofluorobenzene	104		77.0-126		10/01/2020 01:07	<u>WG1551766</u>	
(S) 1,2-Dichloroethane-d4	92.1		70.0-130		10/01/2020 01:07	WG1551766	7

SDG: L1265359

9: 359 PAGE: 46 of 86

Collected date/time: 09/21/20 12:45

SAMPLE RESULTS - 14

Ss

Cn

Qc

Gl

Â

Sc

Mercury by Method 7470A

							 1 Cn	I
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp	I
Analyte	ug/l		ug/l		date / time		2	ì
Mercury	ND		0.200	1	09/24/2020 22:02	WG1548373	Tc	

Metals (ICP) by Method 6010D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Arsenic	ND		10.0	1	09/30/2020 07:41	WG1549460	
Barium	773		5.00	1	09/30/2020 07:41	WG1549460	
Cadmium	ND		2.00	1	09/30/2020 07:41	WG1549460	
Chromium	ND		10.0	1	09/30/2020 07:41	WG1549460	
Lead	ND		6.00	1	09/30/2020 07:41	WG1549460	
Selenium	10.7		10.0	1	09/30/2020 07:41	WG1549460	
Silver	ND		5.00	1	09/30/2020 07:41	WG1549460	

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
LRH (C5-C8)	1430		100	1	09/30/2020 18:39	<u>WG1551743</u>
Acetone	ND		50.0	1	09/30/2020 18:39	WG1551743
Acrylonitrile	ND	JO	10.0	1	09/30/2020 18:39	WG1551743
Benzene	485		10.0	10	10/01/2020 18:26	WG1552323
Bromobenzene	ND		1.00	1	09/30/2020 18:39	WG1551743
Bromodichloromethane	ND		1.00	1	09/30/2020 18:39	WG1551743
Bromoform	ND		1.00	1	09/30/2020 18:39	WG1551743
Bromomethane	ND		5.00	1	09/30/2020 18:39	WG1551743
n-Butylbenzene	8.69		1.00	1	09/30/2020 18:39	WG1551743
sec-Butylbenzene	8.15		1.00	1	09/30/2020 18:39	WG1551743
tert-Butylbenzene	ND		1.00	1	09/30/2020 18:39	WG1551743
Carbon tetrachloride	ND		1.00	1	09/30/2020 18:39	WG1551743
Chlorobenzene	ND		1.00	1	09/30/2020 18:39	WG1551743
Chlorodibromomethane	ND		1.00	1	09/30/2020 18:39	WG1551743
Chloroethane	ND		5.00	1	09/30/2020 18:39	WG1551743
Chloroform	ND		5.00	1	09/30/2020 18:39	WG1551743
Chloromethane	ND		2.50	1	09/30/2020 18:39	WG1551743
2-Chlorotoluene	ND		1.00	1	09/30/2020 18:39	WG1551743
4-Chlorotoluene	ND		1.00	1	09/30/2020 18:39	WG1551743
1,2-Dibromo-3-Chloropropane	ND		5.00	1	09/30/2020 18:39	WG1551743
1,2-Dibromoethane	ND		1.00	1	09/30/2020 18:39	WG1551743
Dibromomethane	ND		1.00	1	09/30/2020 18:39	WG1551743
1,2-Dichlorobenzene	ND		1.00	1	09/30/2020 18:39	WG1551743
1,3-Dichlorobenzene	ND		1.00	1	09/30/2020 18:39	WG1551743
1,4-Dichlorobenzene	ND		1.00	1	09/30/2020 18:39	WG1551743
Dichlorodifluoromethane	ND		5.00	1	09/30/2020 18:39	WG1551743
1,1-Dichloroethane	ND		1.00	1	09/30/2020 18:39	WG1551743
1,2-Dichloroethane	ND		1.00	1	09/30/2020 18:39	WG1551743
1,1-Dichloroethene	ND		1.00	1	09/30/2020 18:39	WG1551743
cis-1,2-Dichloroethene	ND		1.00	1	09/30/2020 18:39	WG1551743
trans-1,2-Dichloroethene	ND		1.00	1	09/30/2020 18:39	WG1551743
1,2-Dichloropropane	ND		1.00	1	09/30/2020 18:39	WG1551743
1,1-Dichloropropene	ND		1.00	1	09/30/2020 18:39	WG1551743
1,3-Dichloropropane	ND		1.00	1	09/30/2020 18:39	WG1551743
cis-1,3-Dichloropropene	ND		1.00	1	09/30/2020 18:39	WG1551743
trans-1,3-Dichloropropene	ND		1.00	1	09/30/2020 18:39	WG1551743
2,2-Dichloropropane	ND		1.00	1	09/30/2020 18:39	WG1551743
Di-isopropyl ether	ND		1.00	1	09/30/2020 18:39	WG1551743
Ethylbenzene	3.01		1.00	1	09/30/2020 18:39	WG1551743
ACCOUNT:			P	ROJECT:	SDG:	DATE/TIME: PAG

SCS Engineers - KS

PROJECT: C4-052-73682 DATE/TIME: 10/05/20 12:26

₩

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Hexachloro-1,3-butadiene	ND		1.00	1	09/30/2020 18:39	WG1551743	
sopropylbenzene	45.6		1.00	1	09/30/2020 18:39	WG1551743	
p-lsopropyltoluene	ND		1.00	1	09/30/2020 18:39	WG1551743	
2-Butanone (MEK)	ND		10.0	1	09/30/2020 18:39	WG1551743	
Methylene Chloride	ND		5.00	1	09/30/2020 18:39	WG1551743	
I-Methyl-2-pentanone (MIBK)	ND		10.0	1	09/30/2020 18:39	WG1551743	
Methyl tert-butyl ether	ND		1.00	1	09/30/2020 18:39	WG1551743	
laphthalene	149		5.00	1	09/30/2020 18:39	WG1551743	
n-Propylbenzene	69.3		1.00	1	09/30/2020 18:39	WG1551743	
Styrene	ND		1.00	1	09/30/2020 18:39	WG1551743	
,1,1,2-Tetrachloroethane	ND		1.00	1	09/30/2020 18:39	WG1551743	
1,2,2-Tetrachloroethane	ND		1.00	1	09/30/2020 18:39	WG1551743	
1,2-Trichlorotrifluoroethane	ND		1.00	1	09/30/2020 18:39	WG1551743	
etrachloroethene	ND		1.00	1	09/30/2020 18:39	WG1551743	
oluene	5.26		1.00	1	09/30/2020 18:39	WG1551743	
,2,3-Trichlorobenzene	ND		1.00	1	09/30/2020 18:39	WG1551743	
2,4-Trichlorobenzene	ND		1.00	1	09/30/2020 18:39	WG1551743	
1,1-Trichloroethane	ND		1.00	1	09/30/2020 18:39	WG1551743	
,1,2-Trichloroethane	ND		1.00	1	09/30/2020 18:39	WG1551743	
richloroethene	ND		1.00	1	09/30/2020 18:39	WG1551743	
richlorofluoromethane	ND		5.00	1	09/30/2020 18:39	WG1551743	
2,3-Trichloropropane	ND		2.50	1	09/30/2020 18:39	WG1551743	
2,4-Trimethylbenzene	1.83		1.00	1	09/30/2020 18:39	WG1551743	
2,3-Trimethylbenzene	4.16		1.00	1	09/30/2020 18:39	WG1551743	
3,5-Trimethylbenzene	ND		1.00	1	09/30/2020 18:39	WG1551743	
/inyl chloride	ND		1.00	1	09/30/2020 18:39	WG1551743	
ylenes, Total	17.2		3.00	1	09/30/2020 18:39	WG1551743	
(S) Toluene-d8	102		80.0-120		09/30/2020 18:39	WG1551743	
(S) Toluene-d8	106		80.0-120		10/01/2020 18:26	WG1552323	
(S) 4-Bromofluorobenzene	99.7		77.0-126		09/30/2020 18:39	WG1551743	
(S) 4-Bromofluorobenzene	92.8		77.0-126		10/01/2020 18:26	WG1552323	
(S) 1,2-Dichloroethane-d4	90.6		70.0-130		09/30/2020 18:39	WG1551743	
(S) 1,2-Dichloroethane-d4	113		70.0-130		10/01/2020 18:26	WG1552323	

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
MRH (C9-C18)	1820		100	1	10/05/2020 01:49	WG1547615
HRH (C19-C35)	344		100	1	10/05/2020 01:49	WG1547615
(S) 1-Chloro-octadecane	103		40.0-140		10/05/2020 01:49	WG1547615

Pesticides (GC) by Method 8081B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Aldrin	ND		0.0500	1	09/29/2020 10:45	WG1549659
Alpha BHC	ND		0.0500	1	09/29/2020 10:45	WG1549659
Beta BHC	ND		0.0500	1	09/29/2020 10:45	WG1549659
Delta BHC	ND		0.0500	1	09/29/2020 10:45	WG1549659
Gamma BHC	ND		0.0500	1	09/29/2020 10:45	WG1549659
Chlordane	ND		5.00	1	09/29/2020 10:45	WG1549659
4,4-DDD	ND	P	0.0500	1	09/29/2020 10:45	WG1549659
4,4-DDE	ND		0.0500	1	09/29/2020 10:45	WG1549659
4,4-DDT	ND		0.0500	1	09/29/2020 10:45	<u>WG1549659</u>
Dieldrin	ND		0.0500	1	09/29/2020 10:45	WG1549659
Endosulfan I	ND		0.0500	1	09/29/2020 10:45	WG1549659

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1265359 DATE/TIME: 10/05/20 12:26 PAGE: 48 of 86

Τс

Ss

Cn

Qc

Gl

ΆI

Sc

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Endosulfan II	ND		0.0500	1	09/29/2020 10:45	WG1549659
Endosulfan sulfate	ND		0.0500	1	09/29/2020 10:45	WG1549659
Endrin	ND		0.0500	1	09/29/2020 10:45	WG1549659
Endrin aldehyde	ND		0.0500	1	09/29/2020 10:45	WG1549659
Endrin ketone	ND		0.0500	1	09/29/2020 10:45	WG1549659
Hexachlorobenzene	ND		0.0500	1	09/29/2020 10:45	WG1549659
Heptachlor	ND		0.0500	1	09/29/2020 10:45	WG1549659
Heptachlor epoxide	ND		0.0500	1	09/29/2020 10:45	WG1549659
Methoxychlor	ND		0.0500	1	09/29/2020 10:45	WG1549659
Toxaphene	ND		0.500	1	09/29/2020 10:45	WG1549659
(S) Decachlorobiphenyl	58.5		10.0-128		09/29/2020 10:45	WG1549659
(S) Tetrachloro-m-xylene	76.6		10.0-127		09/29/2020 10:45	WG1549659

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

SCS Engineers - KS

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
nalyte	ug/l		ug/l		date / time		
cenaphthene	1.03		1.00	1	09/30/2020 10:43	<u>WG1548770</u>	
cenaphthylene	ND		1.00	1	09/30/2020 10:43	WG1548770	
Inthracene	ND		1.00	1	09/30/2020 10:43	WG1548770	
Benzidine	ND		10.0	1	09/30/2020 10:43	WG1548770	
Benzo(a)anthracene	ND		1.00	1	09/30/2020 10:43	WG1548770	
Benzo(b)fluoranthene	ND		1.00	1	09/30/2020 10:43	WG1548770	
Benzo(k)fluoranthene	ND		1.00	1	09/30/2020 10:43	WG1548770	
Benzo(g,h,i)perylene	ND		1.00	1	09/30/2020 10:43	WG1548770	
Benzo(a)pyrene	ND		1.00	1	09/30/2020 10:43	WG1548770	
Bis(2-chlorethoxy)methane	ND		10.0	1	09/30/2020 10:43	WG1548770	
Bis(2-chloroethyl)ether	ND		10.0	1	09/30/2020 10:43	WG1548770	
2,2-Oxybis(1-Chloropropane)	ND		10.0	1	09/30/2020 10:43	WG1548770	
l-Bromophenyl-phenylether	ND		10.0	1	09/30/2020 10:43	WG1548770	
2-Chloronaphthalene	ND		1.00	1	09/30/2020 10:43	WG1548770	
l-Chlorophenyl-phenylether	ND		10.0	1	09/30/2020 10:43	WG1548770	
Chrysene	ND		1.00	1	09/30/2020 10:43	WG1548770	
Dibenz(a,h)anthracene	ND		1.00	1	09/30/2020 10:43	WG1548770	
,2-Dichlorobenzene	ND		10.0	1	09/30/2020 10:43	WG1548770	
,3-Dichlorobenzene	ND		10.0	1	09/30/2020 10:43	WG1548770	
,4-Dichlorobenzene	ND		10.0	1	09/30/2020 10:43	WG1548770	
3,3-Dichlorobenzidine	ND		10.0	1	09/30/2020 10:43	WG1548770	
2,4-Dinitrotoluene	ND		10.0	1	09/30/2020 10:43	WG1548770	
2,6-Dinitrotoluene	ND		10.0	1	09/30/2020 10:43	WG1548770	
Fluoranthene	ND		1.00	1	09/30/2020 10:43	WG1548770	
Fluorene	ND		1.00	1	09/30/2020 10:43	WG1548770	
Hexachlorobenzene	ND		1.00	1	09/30/2020 10:43	WG1548770	
lexachloro-1,3-butadiene	ND		10.0	1	09/30/2020 10:43	WG1548770	
lexachlorocyclopentadiene	ND		10.0	1	09/30/2020 10:43	WG1548770	
lexachloroethane	ND		10.0	1	09/30/2020 10:43	WG1548770	
ndeno(1,2,3-cd)pyrene	ND		1.00	1	09/30/2020 10:43	WG1548770	
sophorone	ND		10.0	1	09/30/2020 10:43	WG1548770	
laphthalene	111		1.00	1	09/30/2020 10:43	WG1548770	
litrobenzene	ND		10.0	1	09/30/2020 10:43	WG1548770	
n-Nitrosodimethylamine	ND		10.0	1	09/30/2020 10:43	WG1548770	
-Nitrosodiphenylamine	ND		10.0	1	09/30/2020 10:43	WG1548770	
-Nitrosodi-n-propylamine	ND		10.0	1	09/30/2020 10:43	WG1548770	
henanthrene	ND		1.00	1	09/30/2020 10:43	WG1548770	
Benzylbutyl phthalate	ND		3.00	1	09/30/2020 10:43	WG1548770	
Bis(2-ethylhexyl)phthalate	6.97		3.00	1	09/30/2020 10:43	WG1548770	
Di-n-butyl phthalate	ND		3.00	1	09/30/2020 10:43	WG1548770	

C4-052-73682

L1265359

49 of 86

10/05/20 12:26

Collected date/time: 09/21/20 12:45

SAMPLE RESULTS - 14

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
analyte	ug/l		ug/l		date / time		L
Diethyl phthalate	ND		3.00	1	09/30/2020 10:43	WG1548770	
Dimethyl phthalate	ND		3.00	1	09/30/2020 10:43	<u>WG1548770</u>	
Di-n-octyl phthalate	ND		3.00	1	09/30/2020 10:43	WG1548770	5
Pyrene	ND		1.00	1	09/30/2020 10:43	<u>WG1548770</u>	
,2,4-Trichlorobenzene	ND		10.0	1	09/30/2020 10:43	WG1548770	L
-Chloro-3-methylphenol	ND		10.0	1	09/30/2020 10:43	<u>WG1548770</u>	
2-Chlorophenol	ND		10.0	1	09/30/2020 10:43	WG1548770	
2,4-Dichlorophenol	ND		10.0	1	09/30/2020 10:43	<u>WG1548770</u>	
2,4-Dimethylphenol	ND		10.0	1	09/30/2020 10:43	WG1548770	
,6-Dinitro-2-methylphenol	ND		10.0	1	09/30/2020 10:43	<u>WG1548770</u>	
2,4-Dinitrophenol	ND		10.0	1	09/30/2020 10:43	WG1548770	
P-Nitrophenol	ND		10.0	1	09/30/2020 10:43	WG1548770	
-Nitrophenol	ND		10.0	1	09/30/2020 10:43	<u>WG1548770</u>	I
Pentachlorophenol	ND		10.0	1	09/30/2020 10:43	<u>WG1548770</u>	
Phenol	ND		10.0	1	09/30/2020 10:43	<u>WG1548770</u>	L L
2,4,6-Trichlorophenol	ND		10.0	1	09/30/2020 10:43	<u>WG1548770</u>	
(S) 2-Fluorophenol	50.5		10.0-120		09/30/2020 10:43	<u>WG1548770</u>	
(S) Phenol-d5	30.8		10.0-120		09/30/2020 10:43	WG1548770	1
(S) Nitrobenzene-d5	77.9		10.0-127		09/30/2020 10:43	WG1548770	
(S) 2-Fluorobiphenyl	85.0		10.0-130		09/30/2020 10:43	WG1548770	L
(S) 2,4,6-Tribromophenol	92.0		10.0-155		09/30/2020 10:43	WG1548770	
(S) p-Terphenyl-d14	91.4		10.0-128		09/30/2020 10:43	WG1548770	

Ср

Тс

Ss

Cn

Qc

GI

Â

Sc

Mercury by Method 7470A

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Mercury	ND		0.200	1	09/24/2020 22:08	WG1548373

Metals (ICP) by Method 6010D

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Arsenic	ND		10.0	1	09/30/2020 07:44	WG1549460
Barium	ND		5.00	1	09/30/2020 07:44	<u>WG1549460</u>
Cadmium	ND		2.00	1	09/30/2020 07:44	<u>WG1549460</u>
Chromium	ND		10.0	1	09/30/2020 07:44	<u>WG1549460</u>
Lead	ND		6.00	1	09/30/2020 07:44	<u>WG1549460</u>
Selenium	ND		10.0	1	09/30/2020 07:44	<u>WG1549460</u>
Silver	ND		5.00	1	09/30/2020 07:44	WG1549460

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
LRH (C5-C8)	ND		100	1	09/30/2020 18:20	WG1551743	
Acetone	ND		50.0	1	09/30/2020 18:20	WG1551743	
Acrylonitrile	ND	JO	10.0	1	09/30/2020 18:20	WG1551743	
Benzene	ND	_	1.00	1	09/30/2020 18:20	WG1551743	
Bromobenzene	ND		1.00	1	09/30/2020 18:20	WG1551743	
Bromodichloromethane	ND		1.00	1	09/30/2020 18:20	WG1551743	
Bromoform	ND		1.00	1	09/30/2020 18:20	WG1551743	
Bromomethane	ND		5.00	1	09/30/2020 18:20	WG1551743	
n-Butylbenzene	ND		1.00	1	09/30/2020 18:20	WG1551743	
ec-Butylbenzene	ND		1.00	1	09/30/2020 18:20	WG1551743	
ert-Butylbenzene	ND		1.00	1	09/30/2020 18:20	WG1551743	
Carbon tetrachloride	ND		1.00	1	09/30/2020 18:20	WG1551743	
Chlorobenzene	ND		1.00	1	09/30/2020 18:20	WG1551743	
Chlorodibromomethane	ND		1.00	1	09/30/2020 18:20	WG1551743	
Chloroethane	ND		5.00	1	09/30/2020 18:20	WG1551743	
Chloroform	ND		5.00	1	09/30/2020 18:20	WG1551743	
hloromethane	ND		2.50	1	09/30/2020 18:20	WG1551743	
-Chlorotoluene	ND		1.00	1	09/30/2020 18:20	WG1551743	
-Chlorotoluene	ND		1.00	1	09/30/2020 18:20	WG1551743	
2-Dibromo-3-Chloropropane	ND		5.00	1	09/30/2020 18:20	WG1551743	
2-Dibromoethane	ND		1.00	1	09/30/2020 18:20	WG1551743	
ibromomethane	ND		1.00	1	09/30/2020 18:20	WG1551743	
2-Dichlorobenzene	ND		1.00	1	09/30/2020 18:20	WG1551743	
3-Dichlorobenzene	ND		1.00	1	09/30/2020 18:20	WG1551743	
4-Dichlorobenzene	ND		1.00	1	09/30/2020 18:20	WG1551743	
ichlorodifluoromethane	ND		5.00	1	09/30/2020 18:20	WG1551743	
1-Dichloroethane	ND		1.00	1	09/30/2020 18:20	WG1551743	
2-Dichloroethane	ND		1.00	1	09/30/2020 18:20	WG1551743	
1-Dichloroethene	ND		1.00	1	09/30/2020 18:20	WG1551743	
s-1,2-Dichloroethene	ND		1.00	1	09/30/2020 18:20	WG1551743	
ans-1,2-Dichloroethene	ND		1.00	1	09/30/2020 18:20	WG1551743	
2-Dichloropropane	ND		1.00	1	09/30/2020 18:20	WG1551743	
1-Dichloropropene	ND		1.00	1	09/30/2020 18:20	WG1551743	
3-Dichloropropane	ND		1.00	1	09/30/2020 18:20	WG1551743	
is-1,3-Dichloropropene	ND		1.00	1	09/30/2020 18:20	WG1551743	
ans-1,3-Dichloropropene	ND		1.00	1	09/30/2020 18:20	WG1551743	
,2-Dichloropropane	ND		1.00	1	09/30/2020 18:20	WG1551743	
i-isopropyl ether	ND		1.00	1	09/30/2020 18:20	WG1551743	
thylbenzene	ND		1.00	1	09/30/2020 18:20	WG1551743	
ACCOUN	Г:		PR	OJECT:	SDG:	DATE/TIME:	PAG

SCS Engineers - KS

PROJECT: C4-052-73682

L1265359

10/05/20 12:26

FIELD BLANK Collected date/time: 09/21/20 12:45

SAMPLE RESULTS - 15

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Hexachloro-1,3-butadiene	ND		1.00	1	09/30/2020 18:20	WG1551743	
Isopropylbenzene	ND		1.00	1	09/30/2020 18:20	WG1551743	
p-Isopropyltoluene	ND		1.00	1	09/30/2020 18:20	WG1551743	
2-Butanone (MEK)	ND		10.0	1	09/30/2020 18:20	<u>WG1551743</u>	
Methylene Chloride	ND		5.00	1	09/30/2020 18:20	<u>WG1551743</u>	
4-Methyl-2-pentanone (MIBK)	ND		10.0	1	09/30/2020 18:20	WG1551743	
Methyl tert-butyl ether	ND		1.00	1	09/30/2020 18:20	<u>WG1551743</u>	
Naphthalene	ND		5.00	1	09/30/2020 18:20	WG1551743	
n-Propylbenzene	ND		1.00	1	09/30/2020 18:20	<u>WG1551743</u>	
Styrene	ND		1.00	1	09/30/2020 18:20	WG1551743	
1,1,1,2-Tetrachloroethane	ND		1.00	1	09/30/2020 18:20	<u>WG1551743</u>	
1,1,2,2-Tetrachloroethane	ND		1.00	1	09/30/2020 18:20	WG1551743	
1,1,2-Trichlorotrifluoroethane	ND		1.00	1	09/30/2020 18:20	<u>WG1551743</u>	
Tetrachloroethene	ND		1.00	1	09/30/2020 18:20	WG1551743	
Toluene	ND		1.00	1	09/30/2020 18:20	<u>WG1551743</u>	
1,2,3-Trichlorobenzene	ND		1.00	1	09/30/2020 18:20	WG1551743	
1,2,4-Trichlorobenzene	ND		1.00	1	09/30/2020 18:20	<u>WG1551743</u>	
1,1,1-Trichloroethane	ND		1.00	1	09/30/2020 18:20	WG1551743	
1,1,2-Trichloroethane	ND		1.00	1	09/30/2020 18:20	WG1551743	
Trichloroethene	ND		1.00	1	09/30/2020 18:20	WG1551743	
Trichlorofluoromethane	ND		5.00	1	09/30/2020 18:20	<u>WG1551743</u>	
1,2,3-Trichloropropane	ND		2.50	1	09/30/2020 18:20	WG1551743	
1,2,4-Trimethylbenzene	ND		1.00	1	09/30/2020 18:20	<u>WG1551743</u>	
1,2,3-Trimethylbenzene	ND		1.00	1	09/30/2020 18:20	WG1551743	
1,3,5-Trimethylbenzene	ND		1.00	1	09/30/2020 18:20	<u>WG1551743</u>	
Vinyl chloride	ND		1.00	1	09/30/2020 18:20	WG1551743	
Xylenes, Total	ND		3.00	1	09/30/2020 18:20	<u>WG1551743</u>	
(S) Toluene-d8	107		80.0-120		09/30/2020 18:20	WG1551743	
(S) 4-Bromofluorobenzene	103		77.0-126		09/30/2020 18:20	WG1551743	
(S) 1,2-Dichloroethane-d4	99.2		70.0-130		09/30/2020 18:20	WG1551743	

Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
MRH (C9-C18)	ND		100	1	10/03/2020 14:30	WG1547615
HRH (C19-C35)	ND		100	1	10/03/2020 14:30	WG1547615
(S) 1-Chloro-octadecane	77.5		40.0-140		10/03/2020 14:30	WG1547615

Pesticides (GC) by Method 8081B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Aldrin	ND		0.0500	1	09/29/2020 11:00	WG1549659
Alpha BHC	ND		0.0500	1	09/29/2020 11:00	WG1549659
Beta BHC	ND		0.0500	1	09/29/2020 11:00	WG1549659
Delta BHC	ND		0.0500	1	09/29/2020 11:00	WG1549659
Gamma BHC	ND		0.0500	1	09/29/2020 11:00	WG1549659
Chlordane	ND		5.00	1	09/29/2020 11:00	WG1549659
4,4-DDD	ND		0.0500	1	09/29/2020 11:00	WG1549659
4,4-DDE	ND		0.0500	1	09/29/2020 11:00	WG1549659
4,4-DDT	ND		0.0500	1	09/29/2020 11:00	WG1549659
Dieldrin	ND		0.0500	1	09/29/2020 11:00	WG1549659
Endosulfan I	ND		0.0500	1	09/29/2020 11:00	WG1549659
Endosulfan II	ND		0.0500	1	09/29/2020 11:00	WG1549659
Endosulfan sulfate	ND		0.0500	1	09/29/2020 11:00	WG1549659
Endrin	ND		0.0500	1	09/29/2020 11:00	WG1549659

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1265359

FIELD BLANK Collected date/time: 09/21/20 12:45 Pesticides (GC) by Method 8081B

SAMPLE RESULTS - 15

ONE LAB. NATIONWIDE.

*

Qc

GI

ΆI

Sc

		_				
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Endrin aldehyde	ND		0.0500	1	09/29/2020 11:00	WG1549659
Endrin ketone	ND		0.0500	1	09/29/2020 11:00	WG1549659
Hexachlorobenzene	ND		0.0500	1	09/29/2020 11:00	WG1549659
Heptachlor	ND		0.0500	1	09/29/2020 11:00	WG1549659
Heptachlor epoxide	ND		0.0500	1	09/29/2020 11:00	WG1549659
Methoxychlor	ND		0.0500	1	09/29/2020 11:00	WG1549659
Toxaphene	ND		0.500	1	09/29/2020 11:00	WG1549659
(S) Decachlorobiphenyl	72.1		10.0-128		09/29/2020 11:00	WG1549659
(S) Tetrachloro-m-xylene	76.1		10.0-127		09/29/2020 11:00	WG1549659

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
Acenaphthene	ND		1.00	1	09/27/2020 17:59	WG1549309	
Acenaphthylene	ND		1.00	1	09/27/2020 17:59	WG1549309	
Anthracene	ND		1.00	1	09/27/2020 17:59	WG1549309	
Benzidine	ND	<u>J4</u>	10.0	1	09/27/2020 17:59	WG1549309	
Benzo(a)anthracene	ND		1.00	1	09/27/2020 17:59	WG1549309	
Benzo(b)fluoranthene	ND		1.00	1	09/27/2020 17:59	WG1549309	
lenzo(k)fluoranthene	ND		1.00	1	09/27/2020 17:59	WG1549309	
Benzo(g,h,i)perylene	ND		1.00	1	09/27/2020 17:59	WG1549309	
Benzo(a)pyrene	ND		1.00	1	09/27/2020 17:59	WG1549309	
Bis(2-chlorethoxy)methane	ND		10.0	1	09/27/2020 17:59	WG1549309	
Bis(2-chloroethyl)ether	ND		10.0	1	09/27/2020 17:59	WG1549309	
2,2-Oxybis(1-Chloropropane)	ND		10.0	1	09/27/2020 17:59	WG1549309	
-Bromophenyl-phenylether	ND		10.0	1	09/27/2020 17:59	WG1549309	
2-Chloronaphthalene	ND		1.00	1	09/27/2020 17:59	WG1549309	
I-Chlorophenyl-phenylether	ND		10.0	1	09/27/2020 17:59	WG1549309	
Chrysene	ND		1.00	1	09/27/2020 17:59	WG1549309	
Dibenz(a,h)anthracene	ND		1.00	1	09/27/2020 17:59	WG1549309	
,2-Dichlorobenzene	ND		10.0	1	09/27/2020 17:59	WG1549309	
3-Dichlorobenzene	ND		10.0	1	09/27/2020 17:59	WG1549309	
4-Dichlorobenzene	ND		10.0	1	09/27/2020 17:59	WG1549309	
,3-Dichlorobenzidine	ND		10.0	1	09/27/2020 17:59	WG1549309	
,4-Dinitrotoluene	ND		10.0	1	09/27/2020 17:59	WG1549309	
,6-Dinitrotoluene	ND		10.0	1	09/27/2020 17:59	WG1549309	
luoranthene	ND		1.00	1	09/27/2020 17:59	WG1549309	
luorene	ND		1.00	1	09/27/2020 17:59	WG1549309	
lexachlorobenzene	ND		1.00	1	09/27/2020 17:59	WG1549309	
lexachloro-1,3-butadiene	ND		10.0	1	09/27/2020 17:59	WG1549309	
łexachlorocyclopentadiene	ND		10.0	1	09/27/2020 17:59	WG1549309	
lexachloroethane	ND		10.0	1	09/27/2020 17:59	WG1549309	
ndeno(1,2,3-cd)pyrene	ND		1.00	1	09/27/2020 17:59	WG1549309	
sophorone	ND		10.0	1	09/27/2020 17:59	WG1549309	
laphthalene	1.22	B	1.00	1	09/27/2020 17:59	WG1549309	
litrobenzene	ND	<u> </u>	10.0	1	09/27/2020 17:59	WG1549309	
-Nitrosodimethylamine	ND		10.0	1	09/27/2020 17:59	WG1549309 WG1549309	
	ND		10.0	1	09/27/2020 17:59		
-Nitrosodiphenylamine			10.0	1		WG1549309	
n-Nitrosodi-n-propylamine Phenanthrene	ND ND		10.0		09/27/2020 17:59 09/27/2020 17:59	WG1549309	
				1		WG1549309	
enzylbutyl phthalate	ND		3.00	1	09/27/2020 17:59	WG1549309	
Bis(2-ethylhexyl)phthalate	ND		3.00	1	09/27/2020 17:59	WG1549309	
Di-n-butyl phthalate	ND		3.00	1	09/27/2020 17:59	WG1549309	
Diethyl phthalate	ND		3.00	1	09/27/2020 17:59	WG1549309	
Dimethyl phthalate Di-n-octyl phthalate	ND		3.00	1	09/27/2020 17:59	WG1549309	
	ND		3.00	1	09/27/2020 17:59	WG1549309	

SCS Engineers - KS

PROJECT: C4-052-73682

L1265359

1

PAGE: 53 of 86

FIELD BLANK Collected date/time: 09/21/20 12:45

SAMPLE RESULTS - 15

*

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cr
Analyte	ug/l		ug/l		date / time		
Pyrene	ND		1.00	1	09/27/2020 17:59	WG1549309	² Tc
1,2,4-Trichlorobenzene	ND		10.0	1	09/27/2020 17:59	WG1549309	
4-Chloro-3-methylphenol	ND		10.0	1	09/27/2020 17:59	WG1549309	3
2-Chlorophenol	ND		10.0	1	09/27/2020 17:59	WG1549309	³ Ss
2,4-Dichlorophenol	ND		10.0	1	09/27/2020 17:59	WG1549309	
2,4-Dimethylphenol	ND		10.0	1	09/27/2020 17:59	WG1549309	⁴ Cr
4,6-Dinitro-2-methylphenol	ND		10.0	1	09/27/2020 17:59	WG1549309	CI
2,4-Dinitrophenol	ND		10.0	1	09/27/2020 17:59	WG1549309	5
2-Nitrophenol	ND		10.0	1	09/27/2020 17:59	WG1549309	⁵ Sr
4-Nitrophenol	ND		10.0	1	09/27/2020 17:59	WG1549309	
Pentachlorophenol	ND		10.0	1	09/27/2020 17:59	WG1549309	⁶ Q(
Phenol	ND		10.0	1	09/27/2020 17:59	WG1549309	Q
2,4,6-Trichlorophenol	ND		10.0	1	09/27/2020 17:59	WG1549309	7
(S) 2-Fluorophenol	42.3		10.0-120		09/27/2020 17:59	WG1549309	΄ GΙ
(S) Phenol-d5	24.7		10.0-120		09/27/2020 17:59	WG1549309	
(S) Nitrobenzene-d5	71.2		10.0-127		09/27/2020 17:59	WG1549309	⁸ Al
(S) 2-Fluorobiphenyl	82.6		10.0-130		09/27/2020 17:59	WG1549309	
(S) 2,4,6-Tribromophenol	101		10.0-155		09/27/2020 17:59	WG1549309	9
(S) p-Terphenyl-d14	84.0		10.0-128		09/27/2020 17:59	WG1549309	ŠC

WG1548373

Mercury by Method 7470A

QUALITY CONTROL SUMMARY <u>L1265359-01,03,04,05,06,07,14,15</u>

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3574232-1 0	9/24/20 21:10			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Mercury	U		0.100	0.200

Laboratory Control Sample (LCS)

(LCS) R3574232-2 0	9/24/20 21:18				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Mercury	3.00	3.00	99.9	80.0-120	

L1265292-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1265292-01 09/24/	20 21:20 • (MS)	R3574232-3 (09/24/20 21:22	2 • (MSD) R3574	4232-4 09/24/	20 21:24						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Mercury	3.00	ND	2.61	2.89	86.8	96.4	1	75.0-125			10.4	20

ACCOUNT:
SCS Engineers - KS

SDG: L1265359 DATE/TIME: 10/05/20 12:26

PAGE: 55 of 86 Metals (ICP) by Method 6010D

QUALITY CONTROL SUMMARY <u>L1265359-01,03,04,05,06,07,14,15</u>

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3576191-1	09/30/20 07:54

(112) 100/01011 00/00/200	07.01			
	MB Result	MB Qualifier	MB MDL	MB RDL
	ug/l		ug/l	ug/l
Arsenic	U		4.40	10.0
Barium	U		0.895	5.00
Cadmium	U		0.563	2.00
Chromium	U		5.00	10.0
Lead	U		2.95	6.00
Selenium	U		7.35	10.0
Silver	U		1.91	5.00

Laboratory Control Sample (LCS)

(LCS) R3576191-2 09	/30/20 07:57				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Arsenic	1000	959	95.9	80.0-120	
Barium	1000	996	99.6	80.0-120	
Cadmium	1000	960	96.0	80.0-120	
Chromium	1000	969	96.9	80.0-120	
Lead	1000	974	97.4	80.0-120	
Selenium	1000	964	96.4	80.0-120	
Silver	200	184	92.2	80.0-120	

L1265314-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1265314-01 09/30/2	0 08:00 • (MS)	R3576191-4 0	9/30/20 08:05	• (MSD) R3576	6191-5 09/30/2	20 08:07						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Arsenic	1000	ND	994	985	98.8	97.9	1	75.0-125			0.870	20
Barium	1000	164	1150	1150	98.7	98.3	1	75.0-125			0.319	20
Cadmium	1000	ND	978	980	97.8	98.0	1	75.0-125			0.202	20
Chromium	1000	ND	972	970	96.5	96.3	1	75.0-125			0.228	20
Lead	1000	ND	988	983	98.3	97.8	1	75.0-125			0.465	20
Selenium	1000	ND	984	1000	98.4	100	1	75.0-125			1.62	20
Silver	200	ND	188	187	92.9	92.2	1	75.0-125			0.670	20

ACCOUNT:
SCS Engineers - KS

PROJECT: C4-052-73682 SDG: L1265359 DATE/TIME: 10/05/20 12:26

PAGE: 56 of 86

QUALITY CONTROL SUMMARY L1265359-01.02.03.04.05.06.07.08.09.10.11.14.15

Гс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	ug/l		ug/l	ug/l		
LRH (C5-C8)	U		33.3	100		
Acetone	U		11.3	50.0		
Acrylonitrile	U		0.671	10.0		
Benzene	U		0.0941	1.00		
Bromobenzene	U		0.118	1.00		
Bromodichloromethane	U		0.136	1.00		
Bromoform	U		0.129	1.00		
Bromomethane	U		0.605	5.00		
n-Butylbenzene	U		0.157	1.00		
ec-Butylbenzene	U		0.125	1.00		
ert-Butylbenzene	U		0.127	1.00		
Carbon tetrachloride	U		0.128	1.00		
Chlorobenzene	U		0.116	1.00		
Chlorodibromomethane	U		0.140	1.00		
Chloroethane	U		0.192	5.00		
Chloroform	U		0.111	5.00		
Chloromethane	U		0.960	2.50		
-Chlorotoluene	U		0.106	1.00		
-Chlorotoluene	U		0.114	1.00		
,2-Dibromo-3-Chloropropane	U		0.276	5.00		
,2-Dibromoethane	U		0.126	1.00		
Dibromomethane	U		0.122	1.00		
,2-Dichlorobenzene	U		0.107	1.00		
,3-Dichlorobenzene	U		0.110	1.00		
4-Dichlorobenzene	U		0.120	1.00		
Dichlorodifluoromethane	U		0.374	5.00		
,1-Dichloroethane	U		0.100	1.00		
,2-Dichloroethane	U		0.0819	1.00		
,1-Dichloroethene	U		0.188	1.00		
is-1,2-Dichloroethene	U		0.126	1.00		
rans-1,2-Dichloroethene	U		0.149	1.00		
,2-Dichloropropane	U		0.149	1.00		
,1-Dichloropropene	U		0.142	1.00		
,3-Dichloropropane	U		0.110	1.00		
is-1,3-Dichloropropene	U		0.111	1.00		
rans-1,3-Dichloropropene	U		0.118	1.00		
2,2-Dichloropropane	U		0.161	1.00		
Di-isopropyl ether	U		0.105	1.00		
thylbenzene	U		0.137	1.00		
Hexachloro-1,3-butadiene	U		0.337	1.00		

SCS Engineers - KS

PROJECT: C4-052-73682 SDG: L1265359 DATE/TIME: 10/05/20 12:26

PAGE: 57 of 86

WG1551743

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY <u>L1265359-01,02,03,04,05,06,07,08,09,10,11,14,15</u>

(MB) R3576468-3 09/30/2	20 11:52				Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	Tc
Isopropylbenzene	U		0.105	1.00	
p-lsopropyltoluene	U		0.120	1.00	³ Ss
2-Butanone (MEK)	U		1.19	10.0	00
Methylene Chloride	U		0.430	5.00	4
4-Methyl-2-pentanone (MIBK)	U		0.478	10.0	Cn
Methyl tert-butyl ether	U		0.101	1.00	
Naphthalene	U		1.00	5.00	⁵Sr
n-Propylbenzene	U		0.0993	1.00	
Styrene	U		0.118	1.00	6 _
1,1,1,2-Tetrachloroethane	U		0.147	1.00	ိဝင
1,1,2,2-Tetrachloroethane	U		0.133	1.00	
Tetrachloroethene	U		0.300	1.00	⁷ Gl
Toluene	U		0.278	1.00	
1,1,2-Trichlorotrifluoroethane	U		0.180	1.00	8
1,2,3-Trichlorobenzene	U		0.230	1.00	A
1,2,4-Trichlorobenzene	U		0.481	1.00	
1,1,1-Trichloroethane	U		0.149	1.00	°Sc
1,1,2-Trichloroethane	U		0.158	1.00	
Trichloroethene	U		0.190	1.00	
Trichlorofluoromethane	U		0.160	5.00	
1,2,3-Trichloropropane	U		0.237	2.50	
1,2,3-Trimethylbenzene	U		0.104	1.00	
1,2,4-Trimethylbenzene	U		0.322	1.00	
1,3,5-Trimethylbenzene	U		0.104	1.00	
Vinyl chloride	U		0.234	1.00	
Xylenes, Total	U		0.174	3.00	
(S) Toluene-d8	108			80.0-120	
(S) 4-Bromofluorobenzene	105			77.0-126	
(S) 1,2-Dichloroethane-d4	97.3			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3576468-1 09/30	/20 10:53				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Acetone	25.0	21.3	85.2	19.0-160	
Acrylonitrile	25.0	17.6	70.4	55.0-149	
Benzene	5.00	5.03	101	70.0-123	
Bromobenzene	5.00	5.22	104	73.0-121	

PROJECT: C4-052-73682 SDG: L1265359 DATE/TIME: 10/05/20 12:26

PAGE: 58 of 86 Bromodichloromethane

Analyte

Bromoform

Bromomethane

n-Butylbenzene sec-Butylbenzene

tert-Butylbenzene Carbon tetrachloride

Chlorobenzene

Chloroethane

Chloromethane

2-Chlorotoluene

4-Chlorotoluene

1,2-Dibromoethane

1,2-Dibromo-3-Chloropropane

Chloroform

Chlorodibromomethane

Volatile Organic Compounds (GC/MS) by Method 8260D

ug/l

5.00

5.00

5.00

5.00

5.00

5.00

5.00

5.00

5.00

5.00

5.00

5.00

5.00

5.00

5.00

5.00

Spike Amount LCS Result

ug/l

4.91

4.59

5.82

5.04

5.17

5.27

4.84

5.44

5.05

5.62

5.05

5.76

5.32

5.44

4.03

4.85

LCS Rec.

%

98.2

91.8

116

101

103

105

96.8

109

101

112

101

115

106

109

80.6

97.0

Rec. Limits

75.0-120

68.0-132

10.0-160

73.0-125

75.0-125

76.0-124

68.0-126

80.0-121

77.0-125

47.0-150

73.0-120

41.0-142

76.0-123

75.0-122

58.0-134

80.0-122

%

LCS Qualifier

QUALITY CONTROL SUMMARY L1265359-01,02,03,04,05,06,07,08,09,10,11,14,15

(LCS) R3576468-1 09/30/20 10:53

ONE	LAB.	NAT	IONW	IDE.

 ¹ Cp
 ² Tc
³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
°Sc

Dibromomethane	5.00	5.19	104	80.0-120
1,2-Dichlorobenzene	5.00	4.94	98.8	79.0-121
1,3-Dichlorobenzene	5.00	5.27	105	79.0-120
1,4-Dichlorobenzene	5.00	5.09	102	79.0-120
Dichlorodifluoromethane	5.00	4.99	99.8	51.0-149
1,1-Dichloroethane	5.00	5.54	111	70.0-126
1,2-Dichloroethane	5.00	4.98	99.6	70.0-128
1,1-Dichloroethene	5.00	5.85	117	71.0-124
cis-1,2-Dichloroethene	5.00	5.51	110	73.0-120
trans-1,2-Dichloroethene	5.00	5.46	109	73.0-120
1,2-Dichloropropane	5.00	5.56	111	77.0-125
1,1-Dichloropropene	5.00	5.21	104	74.0-126
1,3-Dichloropropane	5.00	4.97	99.4	80.0-120
cis-1,3-Dichloropropene	5.00	4.87	97.4	80.0-123
trans-1,3-Dichloropropene	5.00	4.84	96.8	78.0-124
2,2-Dichloropropane	5.00	5.60	112	58.0-130
Di-isopropyl ether	5.00	4.96	99.2	58.0-138
Ethylbenzene	5.00	5.14	103	79.0-123
Hexachloro-1,3-butadiene	5.00	4.43	88.6	54.0-138
Isopropylbenzene	5.00	5.03	101	76.0-127
p-Isopropyltoluene	5.00	5.25	105	76.0-125
2-Butanone (MEK)	25.0	19.5	78.0	44.0-160
Methylene Chloride	5.00	4.76	95.2	67.0-120
4-Methyl-2-pentanone (MIBK)	25.0	21.4	85.6	68.0-142
	COUNT:			PROJECT: C4-052-73682
SCS E	ngineers - KS			C4-052-73682

SDG: L1265359

DATE/TIME: 10/05/20 12:26

PAGE: 59 of 86

QUALITY CONTROL SUMMARY L1265359-01,02,03,04,05,06,07,08,09,10,11,14,15

	Unition Sample	(LCS)
(LCS) R3576468-1	09/30/20 10:53	

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	ug/l	ug/l	%	%			
Methyl tert-butyl ether	5.00	4.73	94.6	68.0-125			
Naphthalene	5.00	4.50	90.0	54.0-135			
n-Propylbenzene	5.00	5.54	111	77.0-124			
Styrene	5.00	4.82	96.4	73.0-130			
1,1,1,2-Tetrachloroethane	5.00	5.11	102	75.0-125			
1,1,2,2-Tetrachloroethane	5.00	4.97	99.4	65.0-130			
Tetrachloroethene	5.00	5.57	111	72.0-132			
Toluene	5.00	5.26	105	79.0-120			
1,1,2-Trichlorotrifluoroethane	5.00	5.21	104	69.0-132			
1,2,3-Trichlorobenzene	5.00	4.84	96.8	50.0-138			
1,2,4-Trichlorobenzene	5.00	4.51	90.2	57.0-137			
1,1,1-Trichloroethane	5.00	5.18	104	73.0-124			
1,1,2-Trichloroethane	5.00	5.14	103	80.0-120			
Trichloroethene	5.00	5.10	102	78.0-124			
Trichlorofluoromethane	5.00	5.23	105	59.0-147			
1,2,3-Trichloropropane	5.00	4.90	98.0	73.0-130			
1,2,3-Trimethylbenzene	5.00	4.89	97.8	77.0-120			
1,2,4-Trimethylbenzene	5.00	5.10	102	76.0-121			
1,3,5-Trimethylbenzene	5.00	5.20	104	76.0-122			
Vinyl chloride	5.00	5.85	117	67.0-131			
Xylenes, Total	15.0	15.5	103	79.0-123			
(S) Toluene-d8			108	80.0-120			
(S) 4-Bromofluorobenzene			104	77.0-126			
(S) 1,2-Dichloroethane-d4			99.9	70.0-130			

Laboratory Control Sample (LCS)

(LCS) R3576468-2 09/30	/20 11:13				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
LRH (C5-C8)	1200	1230	103	70.0-130	
(S) Toluene-d8			104	80.0-120	
(S) 4-Bromofluorobenzene			104	77.0-126	
(S) 1,2-Dichloroethane-d4			98.4	70.0-130	

PROJECT: C4-052-73682

SDG: L1265359

DATE/TIME: 10/05/20 12:26

PAGE: 60 of 86 Τс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

*

Method Blank (MB)

MeanMountMountMountAdvin909090Advin9090Advin9090Advin9090Advin9090Advin9090Advin9090Bonedaciona9090Bonedaci	(MB) R3576585-3 10/01/2						
chaneUNNOcopionalisU6.410.0copionalisU6.410.0combanemeU0.54100combanemeU0.58100combanemeU0.58100combanemeU0.58100combanemeU0.58100combanemeU0.55100combanemeU0.55100combanemeU0.75100combanemeU0.75100combanemeU0.76100 </th <th></th> <th>MB Result</th> <th>MB Qualifier</th> <th>MB MDL</th> <th>MB RDL</th> <th></th> <th></th>		MB Result	MB Qualifier	MB MDL	MB RDL		
code1250concertance00.0540.0<	nalyte	ug/l		ug/l	ug/l		
cycloredU0.6710.0andodrazheU0.6740andodrazheU0.780andodrazheU0.780andodrazheU0.780andodrazheU0.790andodrazheU0.790andodrazheU0.790andodrazheU0.790andodrazheU0.790andodrazheU0.790andodrazheU0.790andodrazheU0.790andodrazheU0.790andodrazheU0.790andodrazheU0.790andodrazheU0.790andodrazheU0.790andodrazheU0.790andodrazheU0.790AlbendrazheU0.790AlbendrazheU0.790AlbendrazheU0.790AlbendrazheU0.790AlbendrazheU0.790AlbendrazheU0.790AlbendrazheU0.790AlbendrazheU0.790AlbendrazheU0.790AlbendrazheU0.790AlbendrazheU0.790AlbendrazheU0.790AlbendrazheU0.790A	cetone	U		11.3	50.0		
maneU0.940.90.9condornoU0.181.0condornoU0.181.0condornoU0.185.0duducenceU0.571.0condornoU0.151.0duducenceU0.151.0duducenceU0.151.0duducenceU0.171.0duducenceU0.161.0duducenceU0.161.0duducenceU0.161.0duducenceU0.161.0duducenceU0.161.0duducenceU0.161.0duducenceU0.161.0duducenceU0.161.0duducenceU0.161.0duducenceU0.161.0duducenceU0.161.0duducenceU0.161.0duducenceU0.161.0duducenceU0.161.0duducenceU0.161.0duducenceU0.101.0duducenceU0.101.0duducenceU0.101.0duducenceU0.101.0duducenceU0.101.0duducenceU0.101.0duducenceU0.161.0duducenceU0.161.0duducenceU0.161	crolein	U					
omodescameUU	crylonitrile	U		0.671	10.0		
ironadiumUD.86I.00romadium0.020.02100Balghenzame0.0555.00Balghenzame0.057100Balghenzame0.010.051100100the baybenzame0.010.02100100horabe testerioristica0.010.04100100horabe testerioristica0.010.04100100horabetazene0.010.04100100100horabetazene0.010.04100100100horabetazene0.000.04100100100horabetazene0.000.062.00100100horabetazene0.000.06100100100horabetazene0.000.06100100100horabetazene0.000.07100100100horabetazene0.000.07100100100horabetazene0.000.07100100100horabetazene0.000.07100100100horabetazene0.000.02100100100horabetazene0.000.02100100100horabetazene0.000.02100100100horabetazene0.000.02100100100horabetazene0.000.02100100100horabetazene0.000.02100100100 <td>enzene</td> <td>U</td> <td></td> <td>0.0941</td> <td>1.00</td> <td></td> <td></td>	enzene	U		0.0941	1.00		
increationUU2510BaiylbaraneU0.6550BaiylbaraneU0.2510BaiylbaraneU0.2510BaiylbaraneU0.2710abolt SchlöpherenU0.2710abolt SchlöpherenU0.1610hördoraneU0.1610hördoraneU0.1610hördoraneU0.1010hördoraneU0.1010hördoraneU0.1010hördoraneU0.1010hördoraneU0.1010hördoraneU0.1010hördoraneU0.1010hördoraneU0.1610hördoraneU0.1610hördoraneU0.1610hördoraneU0.1610hördoraneU0.1210hördoraneU0.1210hördoraneU0.1210hördoraneU0.1410hördoraneU0.1410hördoraneU0.1610hördoraneU0.1610hördoraneU0.1610hördoraneU0.1610hördoraneU0.1610hördoraneU0.1610hördoraneU0.1610hördoraneU0.1610<	romobenzene	U		0.118	1.00		
vironmethameU0.605500PurylemeneU0.157100PurylemeneU0.252100HalylemeneU0.272100HalylemeneU0.278100NoroberneU0.168100NoroberneU0.169500NoroberneU0.160500NoroberneU0.160500NoroberneU0.160500NoroberneU0.160500NoroberneU0.160500NoroberneU0.160500ChoroberneU0.160500ChoroberneU0.160500ChoroberneU0.160500SoloboropopaneU0.160500SoloboropopaneU0.170100SoloboropopaneU0.160500SoloboropopaneU0.160500SoloboropopaneU0.160500SoloboropopaneU0.160500SoloboropopaneU0.160500SoloboropopaneU0.160500SoloboropopaneU0.160500SoloboropopaneU0.160500SoloboropopaneU0.160500SoloboropopaneU0.160500SoloboropopaneU0.160500SoloboropopaneU0.160500SoloboropopaneU0.160500 <td></td> <td>U</td> <td></td> <td>0.136</td> <td>1.00</td> <td></td> <td></td>		U		0.136	1.00		
BubbenereU0.57100cc BubybenereU0.125100cc BubybenereU0.27100albert SchollekU0.28100horoethereU0.16100NoroethereU0.16100NoroethereU0.16100NoroethereU0.16100NoroethereU0.06100NoroethereU0.06100NoroethereU0.06100NoroethereU0.06100SchollekU0.06100SchollekU0.07100SchollekU0.07100SchollekU0.07100SchollekU0.07100SchollekU0.07100SchollekU0.07100SchollekU0.08100SchollekU0.09100SchollekU0.09100SchollekU0.08100SchollekU0.08100SchollekU0.08100SchollekU0.09100SchollekU0.09100SchollekU0.00100SchollekU0.00100SchollekU0.00100SchollekU0.00100SchollekU0.00100SchollekU0.00100	romoform	U		0.129	1.00		
eduptoreneU0.25100rebuytoreneU0.78100htorobraneU0.78100htorobraneU0.78100htorobraneU0.9250htorobraneU0.960250ChorobraneU0.960250ChorobraneU0.76500ChorobraneU0.76500ChorobraneU0.76500ChorobraneU0.76500ChorobraneU0.76500ChorobraneU0.76500ChorobraneU0.76500ChorobraneU0.76500ChorobraneU0.76500ChorobraneU0.76500ChorobraneU0.76500ChorobraneU0.76500ChorobraneU0.76500ChorobraneU0.76500ChorobraneU0.76500ChorobraneU0.76500ChorobraneU0.76500ChorobraneU0.74500ChorobraneU0.74500ChorobraneU0.88100ChorobraneU0.84100ChorobraneU0.94100ChorobraneU0.94100ChorobraneU0.94100ChorobraneU0.94100Chorobrane </td <td>romomethane</td> <td>U</td> <td></td> <td>0.605</td> <td>5.00</td> <td></td> <td></td>	romomethane	U		0.605	5.00		
HistingU0.127100atton trachfordeU0.128100hitordo tracendoU0.118100hitordo tracendoU0.109100hitordo tracendoU0.1925.00hitordo tracendoU0.9002.50hitordo tracendoU0.9002.50Coltorato tracendoU0.100100Coltorato tracendoU0.100100Coltorato tracendoU0.126100Coltorato tracendoU0.126100Coltorato tracendoU0.120100Coltorato tracendoU0.100100Coltorato tracendoU0.100100S DichloroptaneU0.100100S DichloroptaneU0.020100S DichloroptaneU0.120100S DichloroptaneU0.120100S DichloroptaneU0.120100S Dichl	-Butylbenzene	U		0.157	1.00		
aton texhonoleU0.128100hino denareU0.160.0hino denareU0.160.0hino denareU0.125.00hino denareU0.662.50Chino denareU0.660.0Chino denareU0.660.0Chino denareU0.760.0Chino denareU0.760.0Chino denareU0.760.0Chino denareU0.760.0Chino denareU0.760.0Chino denareU0.760.0Chino denareU0.760.0Chino denareU0.760.0Chino denareU0.760.0Chino denareU0.720.0Chino denareU0.740.0Chino denareU0.740.0Chino denareU0.740.0Chino denareU0.740.0Chino denareU0.880.0Chino denareU0.880.0Chino denareU0.890.0Chino denareU0.140.0Chino denareU0.140.0Chino denareU0.890.0Chino denareU0.890.0Chino denareU0.890.0Chino denareU0.140.0Chino denareU0.140.0Chino denare </td <td>ec-Butylbenzene</td> <td>U</td> <td></td> <td>0.125</td> <td>1.00</td> <td></td> <td></td>	ec-Butylbenzene	U		0.125	1.00		
IntrodemaneI0.160.16IntrodemaneI0.160.000.00IntrodemaneI0.005.000.000.00IntrodemaneI0.000.000.000.00IntrodemaneI0.000.000.000.00ChorotolueneI0.000.000.000.00ObronomanaI0.000.000.000.00ObronomanaI0.000.000.000.00ObronomanaI0.000.000.000.00ObronomanaI0.000.000.000.00ObronomanaI0.000.000.000.00ObronomanaI0.000.000.000.00ObronomanaI0.000.000.000.00ObronomanaI0.000.000.000.00ObronomanaI0.000.000.000.00ObronomanaI0.000.000.000.00ObronomanaI0.000.000.000.00ObronomanaI0.000.000.000.00ObronomanaI0.000.000.000.00ObronomanaI0.000.000.000.00ObronomanaI0.000.000.000.00ObronomanaI0.000.000.000.00ObronomanaI0.000.000.000.00	ert-Butylbenzene	U		0.127	1.00		
NorodbronomethaneU0.1001.000NoroefbaneU0.1015.000NoroefbaneU0.1005.000NoroefbaneU0.9602.50ColorotobueneU0.1061.000201bronos2-NoloroppaneU0.2605.000201bronos2-NoloroppaneU0.2605.000201bronos2-NoloroppaneU0.2625.000201bronos2-NoloroppaneU0.2621.000201bronos2-NoloroppaneU0.1021.000201bronos2-NoloroppaneU0.1021.000201bronos2-NoloroppaneU0.1001.000201bronos2-NoloroppaneU0.1001.000201bronos2-NoloroppaneU0.1001.000201bronos2-NoloroppaneU0.0001.000201bronos2-NoloroppaneU0.0001.000201bronos2-NoloroppaneU0.0001.000201bronos2-NoloroppaneU0.1001.000201bronos2-NoloroppaneU0.1001.000201bronos2-NoloroppaneU0.1001.000201bronosppaneU0.1001.000201bronosppaneU0.1001.000201bronosppaneU0.1001.000201bronosppaneU0.1001.000201bronosppaneU0.1001.000201bronosppaneU0.1001.000201bronosppaneU0.1011.000201bronosppaneU <t< td=""><td>Carbon tetrachloride</td><td>U</td><td></td><td>0.128</td><td>1.00</td><td></td><td></td></t<>	Carbon tetrachloride	U		0.128	1.00		
InicrectioneV0.1925.00InicrectioneV0.002.50InicrectioneV0.002.50InicrectioneV0.001.00InicrectioneV0.025.00InicrectioneV0.025.00InicrectioneV0.025.00InicrectioneV0.021.00InicrectioneV0.021.00InicrectioneV0.021.00InicrectioneV0.021.00InicrectioneV0.021.00InicrectioneV0.021.00InicrectioneV0.041.00InicrectioneV0.041.00InicrectioneV0.041.00InicrectioneV0.041.00InicrectioneV0.041.00InicrectioneV0.041.00InicrectioneV0.041.00InicrectioneV0.041.00InicrectioneV0.041.00InicrectioneV0.041.00InicrectioneV0.041.00InicrectioneV0.041.00InicrectioneV0.041.00InicrectioneV0.041.00InicrectioneV0.041.00InicrectioneV0.041.00InicrectioneV0.041.00InicrectioneV0.041.00<	Chlorobenzene	U		0.116	1.00		
hiorondhaneU0.1115.00hiorondhaneU0.9602.50ChloroblenedU0.060.00ChloroblenedU0.740.02.bibronesthaneU0.7265.002.bibronesthaneU0.261.002.bibronesthaneU0.1261.002.bibronesthaneU0.1071.002.bibronesthaneU0.1071.002.bibronesthaneU0.1071.002.bibronesthaneU0.1001.002.bibronesthaneU0.1001.002.bibronesthaneU0.1001.002.bibronesthaneU0.1001.002.bibronesthaneU0.1001.002.bibronesthaneU0.1001.002.bibronesthaneU0.1001.002.bibronesthaneU0.1001.002.bibronesthaneU0.1261.002.bibronesthaneU0.1261.002.bibronesthaneU0.1261.002.bibronesthaneU0.1261.002.bibronesthaneU0.1001.002.bibronesthaneU0.1001.002.bibronesthaneU0.1001.002.bibronesthaneU0.1001.002.bibronesthaneU0.1001.002.bibronesthaneU0.1001.002.bibronesthaneU0.1001.002.bibronesthane <td>hlorodibromomethane</td> <td>U</td> <td></td> <td>0.140</td> <td>1.00</td> <td></td> <td></td>	hlorodibromomethane	U		0.140	1.00		
hiromethaneU0.9602.50ChlorotolueneU0.06100ChlorotolueneU0.161002.bibrano-3.ChloropropaU0.2765.002.bibrano-3.ChloropropaU0.261002.bibrano-3.ChloropropaU0.261002.bibrano-3.ChloropropaU0.1701002.bibrano-schueU0.1701002.bibrano-schueU0.1201002.bibrano-schueU0.1201002.bibrano-schueU0.1201002.bibrano-schueU0.0201002.bibrano-schueU0.0201002.bibrano-schueU0.0201002.bibrano-schueU0.0201002.bibrano-schueU0.0201002.bibrano-schueU0.0201002.bibrano-schueU0.0201002.bibrano-schueU0.1201002.bibrano-schueU0.1201002.bibrano-schueU0.1201002.bibrano-schueU0.1201002.bibrano-schueU0.1201002.bibrano-schueU0.1201002.bibrano-schueU0.1201002.bibrano-schueU0.1201002.bibrano-schueU0.1201002.bibrano-schueU0.1201002.bibrano-schueU0.1201002.bibra	Chloroethane	U		0.192	5.00		
ChlorotolueneU0.06100ChlorotolueneU0.1410020birone3-ChlorophaneU0.265.0020birone3-ChlorophaneU0.126100bironomethaneU0.12710020chlorobenzeneU0.0710020chlorobenzeneU0.001004DichlorobenzeneU0.3745.0020chlorobenzeneU0.1001004DichlorobenzeneU0.3745.0020chlorobenzeneU0.10010020chlorobenzeneU0.10010020chlorobenzeneU0.10010020chlorobenzeneU0.18810020chlorobenzeneU0.18810020chlorobenzeneU0.12610020chlorobenzeneU0.19010020chlorophaneU0.14010020chlorophaneU0.18110020chlorophaneU0.18110020chlorophaneU0.18110020chlorophaneU0.18110020chlorophaneU0.18110020chlorophaneU0.18110020chlorophaneU0.18110020chlorophaneU0.18110020chlorophaneU0.18110020chlorophaneU0.18110020chlorophaneU0.18110020chlorophaneU0.1811	hloroform	U		0.111	5.00		
ChlorotolueneV01410020bronost-AchloropopaneV0.2765.0020bronosthaneV0.12610020bronosthaneV0.12010020bronosthaneV0.10010020bronosthaneV0.10010020bronosthaneV0.10010020bronosthaneV0.10010020bronosthaneV0.10010020bronosthaneV0.00010020bronostha	hloromethane	U		0.960	2.50		
2-biorone-3-ChioroppopaeU0.2765.002-biorone-thaneU0.1261.00biorone-thaneU0.1221.002-bichiorobenzeneU0.101.003-bichiorobenzeneU0.1201.004-bichiorobenzeneU0.1201.001-bichiorobenzeneU0.1201.002-bichiorobenzeneU0.1201.002-bichiorobenzeneU0.1201.002-bichiorobenzeneU0.1201.002-bichiorobenzeneU0.1201.002-bichiorobenzeneU0.1201.002-bichiorobenzeneU0.1201.002-bichiorobenzeneU0.1201.002-bichiorobenzeneU0.1201.002-bichiorobenzeneU0.1261.002-bichiorobenzeneU0.1261.002-bichioropopaeU0.1421.002-bichioropopaeU0.1421.002-bichioropopaeU0.1411.002-bichioropopaeU0.1141.002-bichioropopaeU0.1161.002-bichioropopaeU0.1611.002-bichioropopaeU0.1611.002-bichioropopaeU0.1611.002-bichioropopaeU0.1611.002-bichioropopaeU0.1611.002-bichioropopaeU0.1611.002-bichioropopaeU0.	-Chlorotoluene	U		0.106	1.00		
2-DichonochianeV0.1261.00VibromochianeV0.1201.002-DicholopeareneV0.1001.004-DicholopeareneV0.1201.004-DicholopeareneV0.3405.001-DicholopeareneV0.0001.001-DicholopeareneV0.0001.001-DicholopeareneV0.0001.001-DicholopeareneV0.0001.001-DicholopeareneV0.0001.001-DicholopeareneV0.0001.002-DicholopeareneV0.0101.001-DicholopeareneV0.1201.002-DicholopeareneV0.1201.001-DicholopeareneV0.1201.001-DicholopeareneV0.1201.002-DicholopeareneV0.1201.002-DicholopeareneV0.1201.002-DicholopeareneV0.1201.002-DicholopeareneV0.1201.002-DicholopeareneV0.1201.002-DicholopeareneV0.1201.002-DicholopeareneV0.1201.002-DicholopeareneV0.1001.002-DicholopeareneV0.1001.002-DicholopeareneV0.1001.002-DicholopeareneV0.1001.002-DicholopeareneV0.1001.002-DicholopeareneV0.100<	-Chlorotoluene	U		0.114	1.00		
ibronmethaneU0.1221.002-DichlorobenzeneU0.1071.003-DichlorobenzeneU0.1001.004-DichlorobenzeneU0.200.001-DichlorobenzeneU0.3745.001-DichlorobenzeneU0.001.002-DichlorobenzeneU0.001.002-DichlorobenzeneU0.0101.002-DichlorobenzeneU0.0101.002-DichlorobenzeneU0.0101.002-DichlorobenzeneU0.1811.002-DichlorobenzeneU0.1261.002-DichlorobenzeneU0.1421.002-DichloropheneU0.1421.002-DichloropheneU0.1401.002-DichloropheneU0.1111.002-DichloropheneU0.1111.002-DichloropheneU0.1811.002-DichloropheneU0.1811.002-DichloropheneU0.1811.002-DichloropheneU0.1811.002-DichloropheneU0.1811.002-DichloropheneU0.1811.002-DichloropheneU0.1811.002-DichloropheneU0.1811.002-DichloropheneU0.1811.002-DichloropheneU0.1811.002-DichloropheneU0.1811.002-DichloropheneU0.1811.00	2-Dibromo-3-Chloropropane	U		0.276	5.00		
2-DichlorobenzeneV0.1071.003-DichlorobenzeneV0.1001.004-DichlorobenzeneV0.3745.001-DichlorobenzeneV0.1001.001-DichlorobenzeneV0.1001.002-DichlorobenzeneV0.1001.002-DichlorobenzeneV0.8191.002-DichlorobenzeneV0.1261.002-DichlorobenzeneV0.1261.002-DichlorobenzeneV0.1261.002-DichlorophaneV0.1491.002-DichlorophaneV0.1001.002-DichlorophaneV0.1001.003-DichlorophaneV0.1101.003-DichlorophaneV0.1101.003-DichlorophaneV0.1101.003-DichlorophaneV0.1101.003-DichlorophaneV0.1101.003-DichlorophaneV0.1101.003-DichlorophaneV0.1101.003-DichlorophaneV0.1101.003-DichlorophaneV0.1101.003-DichlorophaneV0.1101.003-DichlorophaneV0.1101.003-DichlorophaneV0.1101.003-DichlorophaneV0.1101.003-DichlorophaneV0.1101.003-DichlorophaneV0.1101.003-DichlorophaneV0.1101.	2-Dibromoethane	U		0.126	1.00		
3-DichlorobenzeneV0.1001.004-DichlorobenzeneV0.2000.3745.001-DichlorothaneV0.001.001.002-DichlorothaneV0.0101.001.002-DichlorothaneV0.8191.001.001-DichlorothaneV0.8191.001.001-DichlorothaneV0.1001.001.001-DichlorothaneV0.1491.001.001-DichlorothaneV0.1491.001.002-DichlorothaneV0.1491.001.002-DichlorothaneV0.1401.001.002-DichlorothaneV0.1001.001.002-DichlorothaneV0.1001.001.002-DichlorothaneV0.1101.001.002-DichlorothaneV0.1601.001.002-DichlorothaneV0.1601.001.002-DichlorothaneV0.1601.001.001-DichlorothaneV0.1601.001.001-DichlorothaneV0.1601.001.001-DichlorothaneV0.1601.001.001-DichlorothaneV0.1601.001.001-DichlorothaneV0.1601.001.001-DichlorothaneV0.1601.001.001-DichlorothaneV0.1601.001.001-DichlorothaneV0.160 <td< td=""><td>Vibromomethane</td><td>U</td><td></td><td>0.122</td><td>1.00</td><td></td><td></td></td<>	Vibromomethane	U		0.122	1.00		
4-DichlorodenzeneV0.2001.00ichlorodifluoromethaneV0.3745.001-DichloroethaneV0.0001.002-DichloroethaneV0.8801.001-DichloroethaneV0.1821.001-DichloroethaneV0.1261.001-DichloroethaneV0.1261.002-DichloroethaneV0.4141.002-DichloroethaneV0.4141.002-DichloroptopaneV0.1401.003-DichloroptopaneV0.1101.003-DichloroptopaneV0.1811.003-DichloroptopaneV0.1811.002-DichloroptopaneV0.1811.002-DichloroptopaneV0.1811.002-DichloroptopaneV0.1811.002-DichloroptopaneV0.1811.001-SipopolyteherV0.1051.001-SipopolyteherV0.1051.00	2-Dichlorobenzene	U		0.107	1.00		
ichlorodifluoromethaneV0.3745.001-DichloroethaneV0.1001.002-DichloroethaneV0.8191.001-DichloroethaneV0.1261.00s-1,2-DichloroethaneV0.1261.002-DichloroethaneV0.1491.002-DichloroethaneV0.1491.002-DichloroethaneV0.1491.002-DichloroptopaneV0.1421.002-DichloroptopaneV0.1101.003-DichloroptopaneV0.1101.003-DichloroptopaneV0.1101.003-DichloroptopaneV0.1801.003-DichloroptopaneV0.1801.003-DichloroptopaneV0.1801.003-DichloroptopaneV0.1801.003-DichloroptopaneV0.1801.003-DichloroptopaneV0.1801.003-DichloroptopaneV0.1801.003-DichloroptopaneV0.1801.003-DichloroptopaneV0.1801.003-DichloroptopaneV0.1801.003-DichloroptopaneV0.1801.003-DichloroptopaneV0.1601.003-DichloroptopaneV0.1501.003-DichloroptopaneV0.1501.003-DichloroptopaneV0.1501.003-DichloroptopaneV0.1501.003-Dichloropt	3-Dichlorobenzene	U		0.110	1.00		
1-DichloroethaneV0.0000.00002-DichloroethaneV0.08191.001-DichloroethaneV0.1841.001-DichloroethaneV0.1261.00ans-1,2-DichloroethaneV0.1491.002-DichloroptopaneV0.1491.002-DichloroptopaneV0.1421.003-DichloroptopaneV0.1421.003-Dichloroptopane0.1101.003-Dichloroptopane0.1101.003-DichloroptopaneV0.1101-DichloroptopaneV0.1101-Dichloroptopane0.1101.003-Dichloroptopane0.1101.003-DichloroptopaneV0.1611-DichloroptopaneV0.1611-DichloroptopaneV0.1611-DichloroptopaneV0.1611-DichloroptopaneV0.1611-DichloroptopaneV0.1611-DichloroptopaneV0.1611-DichloroptopaneV0.1611-DichloroptopaneV0.1611-DichloroptopaneV0.1611-DichloroptopaneV0.1051-DichloroptopaneV0.1051-DichloroptopaneV0.1051-DichloroptopaneV0.1051-DichloroptopaneV0.1051-DichloroptopaneV0.1051-DichloroptopaneV0.1051-DichloroptopaneV0.1051-Dichloroptopane	4-Dichlorobenzene	U		0.120	1.00		
2-DichloroethaneU0.08191.001-DichloroethaneU0.1881.00is-1,2-DichloroethaneU0.1261.002-DichloroptopaneU0.1491.001-DichloroptopaneU0.1421.003-DichloroptopaneU0.1101.003-DichloroptopaneU0.1101.003-DichloroptopaneU0.1111.003-DichloroptopaneU0.1181.003-DichloroptopaneU0.1181.003-DichloroptopaneU0.1611.003-DichloroptopaneU0.1611.003-DichloroptopaneU0.1611.003-DichloroptopaneU0.1611.003-DichloroptopaneU0.1611.003-DichloroptopaneU0.1611.003-DichloroptopaneU0.1611.003-DichloroptopaneU0.1501.001-DichloroptopaneU0.1501.001-DichloroptopaneU0.1501.00	ichlorodifluoromethane	U		0.374	5.00		
1-DichloroetheneV0.1881.00is-12-DichloroetheneV0.1261.00ans-12-DichloroetheneV0.4901.002-DichloropropaneV0.4901.001-DichloropropaneV0.1421.003-DichloropropaneV0.1101.003-DichloropropaneV0.1101.00ans-13-DichloropropaneV0.1101.00ans-13-DichloropropaneV0.1811.002-DichloropropaneV0.1611.002-DichloropropaneV0.1611.002-DichloropropaneV0.1611.002-DichloropropaneV0.1611.002-DichloropropaneV0.1611.002-DichloropropaneV0.1611.002-DichloropropaneV0.1611.002-DichloropropaneV0.1611.002-DichloropropaneV0.1611.002-DichloropropaneV0.1611.002-DichloropropaneV0.1701.002-DichloropropaneV0.1701.002-DichloropropaneV0.1701.002-DichloropropaneV0.1701.002-DichloropropaneV0.1701.002-DichloropropaneV0.1701.002-DichloropropaneV0.1701.002-DichloropropaneV0.1701.002-DichloropropaneV0.1701.00 <t< td=""><td>1-Dichloroethane</td><td>U</td><td></td><td>0.100</td><td>1.00</td><td></td><td></td></t<>	1-Dichloroethane	U		0.100	1.00		
is.12-DichloroetheneU0.1261.002-DichloropropaneV0.1491.002-DichloropropaneV0.1421.003-DichloropropaneV0.101.003-DichloropropaneV0.1101.00isr.13-DichloropropaneV0.1111.00isr.13-DichloropropaneV0.1181.0012-DichloropropaneV0.1181.0012-DichloropropaneV0.1611.0012-DichloropropaneV0.1611.0012-DichloropropaneV0.1611.0012-DichloropropaneV0.1051.0013-DichloropropaneV0.1051.00	,2-Dichloroethane	U		0.0819	1.00		
rans-1,2-DichloropthemeIII1,2-DichloropthemeII<	,1-Dichloroethene	U		0.188	1.00		
2-DichloropropaneU0.1491.001-Dichloropropane00.1421.003-Dichloropropane00.1101.00is-1,3-Dichloropropane00.1111.00rans-1,3-Dichloropropane00.1181.001,2-Dichloropropane00.1611.001,2-Dichloropropane0.1611.001,2-Dichloropropane0.1051.001,2-Dichloropropane0.1051.001,2-Dichloropropane0.1051.001,1-Dichloropropane0.1371.00	is-1,2-Dichloroethene	U		0.126	1.00		
1-DichloropropeneU0.1421.003-DichloropropeneU0.1101.00is-1,3-DichloropropeneU0.1181.00is-s-1,3-DichloropropeneU0.1801.001,2-DichloropropeneU0.1611.001,2-DichloropropeneU0.1051.001,2-DichloropropeneU0.1051.001,2-DichloropropeneU0.1051.001,1-DichloropropeneU0.1371.00	rans-1,2-Dichloroethene	U		0.149	1.00		
3-DichloropropaneV0.1101.00is-1,3-DichloropropeneV0.1181.00is-1,3-DichloropropeneV0.1181.00i,2-DichloropropaneV0.1611.00i,2-DichloropropeneV0.1051.00i,2-DichloropropeneV0.1051.00i,1-Disopropyl etherV0.1371.00	,2-Dichloropropane	U		0.149	1.00		
is-1,3-Dichloropropene U 0.111 1.00 rans-1,3-Dichloropropene U 0.18 1.00 2,2-Dichloropropene U 0.161 1.00 Di-isopropylether U 0.105 1.00 Xitylbenzene U 0.137 1.00	,1-Dichloropropene	U		0.142	1.00		
is-1,3-Dichloropropene U 0.111 1.00 rans-1,3-Dichloropropene U 0.18 1.00 ,2-Dichloropropene U 0.161 1.00 Di-sopropylether U 0.105 1.00 thylbenzene U 0.137 1.00	,3-Dichloropropane	U		0.110	1.00		
,2-Dichloropropane U 0.161 1.00 i-isopropyl ether U 0.105 1.00 thylbenzene U 0.137 1.00				0.111			
,2-Dichloropropane U 0.161 1.00 i-isopropyl ether U 0.105 1.00 thylbenzene U 0.137 1.00	ans-1,3-Dichloropropene	U		0.118	1.00		
i-isopropyl ether U 0.105 1.00 thylbenzene U 0.137 1.00							
thylbenzene U 0.137 1.00							

SCS Engineers - KS

C4-052-73682

L1265359

DATE/TIME: 10/05/20 12:26

PAGE: 61 of 86

WG1551766

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY L1265359-12,13

ONE LAB. NATIONWIDE.

Method Blank (MB)

Method Blank (MB)					1
(MB) R3576585-3 10/01/2	0 00:28				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	Tc
Isopropylbenzene	U		0.105	1.00	
p-Isopropyltoluene	U		0.120	1.00	³ Ss
2-Butanone (MEK)	U		1.19	10.0	0.5
Methylene Chloride	U		0.430	5.00	4
4-Methyl-2-pentanone (MIBK)	U		0.478	10.0	⁻ Cn
Methyl tert-butyl ether	U		0.101	1.00	
Naphthalene	U		1.00	5.00	⁵Sr
n-Propylbenzene	U		0.0993	1.00	
Styrene	U		0.118	1.00	6
1,1,1,2-Tetrachloroethane	U		0.147	1.00	ିQc
1,1,2,2-Tetrachloroethane	U		0.133	1.00	
Tetrachloroethene	U		0.300	1.00	⁷ Gl
Toluene	U		0.278	1.00	<u> </u>
1,1,2-Trichlorotrifluoroethane	U		0.180	1.00	8
1,2,3-Trichlorobenzene	U		0.230	1.00	A
1,2,4-Trichlorobenzene	U		0.481	1.00	
1,1,1-Trichloroethane	U		0.149	1.00	°Sc
1,1,2-Trichloroethane	U		0.158	1.00	00
Trichloroethene	U		0.190	1.00	
Trichlorofluoromethane	U		0.160	5.00	
1,2,3-Trichloropropane	U		0.237	2.50	
1,2,3-Trimethylbenzene	U		0.104	1.00	
1,2,4-Trimethylbenzene	U		0.322	1.00	
1,3,5-Trimethylbenzene	U		0.104	1.00	
Vinyl chloride	U		0.234	1.00	
Xylenes, Total	U		0.174	3.00	
(S) Toluene-d8	110			80.0-120	
(S) 4-Bromofluorobenzene	102			77.0-126	
(S) 1,2-Dichloroethane-d4	87.8			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Acetone	25.0	21.9	23.9	87.6	95.6	19.0-160			8.73	27
Acrolein	25.0	15.3	17.8	61.2	71.2	10.0-160			15.1	26
Acrylonitrile	25.0	21.9	18.7	87.6	74.8	55.0-149			15.8	20
Benzene	5.00	5.03	4.87	101	97.4	70.0-123			3.23	20

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
SCS Engineers - KS	C4-052-73682	L1265359	10/05/20 12:26	62 of 86

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3576585-1	09/30/20 23:31 • (L	CSD) R3576585-2	09/30/20 23:50

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Bromobenzene	5.00	5.23	4.96	105	99.2	73.0-121			5.30	20	
Bromodichloromethane	5.00	4.71	4.66	94.2	93.2	75.0-120			1.07	20	
Bromoform	5.00	4.69	4.46	93.8	89.2	68.0-132			5.03	20	
Bromomethane	5.00	5.21	5.24	104	105	10.0-160			0.574	25	
n-Butylbenzene	5.00	5.14	5.05	103	101	73.0-125			1.77	20	
ec-Butylbenzene	5.00	5.12	5.08	102	102	75.0-125			0.784	20	
ert-Butylbenzene	5.00	5.36	5.42	107	108	76.0-124			1.11	20	
Carbon tetrachloride	5.00	4.01	3.44	80.2	68.8	68.0-126			15.3	20	
Chlorobenzene	5.00	5.31	5.31	106	106	80.0-121			0.000	20	
hlorodibromomethane	5.00	5.11	4.95	102	99.0	77.0-125			3.18	20	
hloroethane	5.00	5.30	5.41	106	108	47.0-150			2.05	20	
Chloroform	5.00	4.90	4.67	98.0	93.4	73.0-120			4.81	20	
chloromethane	5.00	4.95	4.92	99.0	98.4	41.0-142			0.608	20	
-Chlorotoluene	5.00	5.28	5.17	106	103	76.0-123			2.11	20	
-Chlorotoluene	5.00	5.22	5.18	104	104	75.0-122			0.769	20	
2-Dibromo-3-Chloropropane	5.00	4.81	4.12	96.2	82.4	58.0-134			15.5	20	
2-Dibromoethane	5.00	5.09	4.68	102	93.6	80.0-122			8.39	20	
ibromomethane	5.00	5.28	5.10	106	102	80.0-120			3.47	20	
2-Dichlorobenzene	5.00	4.90	4.86	98.0	97.2	79.0-121			0.820	20	
3-Dichlorobenzene	5.00	5.16	5.04	103	101	79.0-120			2.35	20	
4-Dichlorobenzene	5.00	5.23	4.93	105	98.6	79.0-120			5.91	20	
ichlorodifluoromethane	5.00	4.27	4.37	85.4	87.4	51.0-149			2.31	20	
1-Dichloroethane	5.00	5.39	5.20	108	104	70.0-126			3.59	20	
2-Dichloroethane	5.00	4.93	4.74	98.6	94.8	70.0-128			3.93	20	
1-Dichloroethene	5.00	5.42	5.47	108	109	71.0-124			0.918	20	
s-1,2-Dichloroethene	5.00	5.46	5.28	109	106	73.0-120			3.35	20	
ans-1,2-Dichloroethene	5.00	5.61	5.44	112	109	73.0-120			3.08	20	
2-Dichloropropane	5.00	5.40	5.14	108	103	77.0-125			4.93	20	
1-Dichloropropene	5.00	5.22	4.63	104	92.6	74.0-126			12.0	20	
3-Dichloropropane	5.00	5.12	4.84	102	96.8	80.0-120			5.62	20	
s-1,3-Dichloropropene	5.00	4.81	4.59	96.2	91.8	80.0-123			4.68	20	
ans-1,3-Dichloropropene	5.00	4.81	4.55	96.4	93.4	78.0-123			3.16	20	
,2-Dichloropropane	5.00	4.57	4.34	91.4	86.8	58.0-130			5.16	20	
i-isopropyl ether	5.00	4.65	4.29	93.0	85.8	58.0-138			8.05	20	
thylbenzene	5.00	4.05 5.19	4.29 5.19	93.0 104	104	79.0-123			0.000	20	
lexachloro-1,3-butadiene	5.00	4.21	4.62	84.2	92.4	54.0-123			9.29	20	
opropylbenzene	5.00	5.07	5.01	101	92.4 100	76.0-127			9.29 1.19	20	
-lsopropyltoluene	5.00	5.07	5.17	103	103	76.0-127			0.000	20	
-Butanone (MEK)	25.0	23.0	20.0	92.0	80.0	44.0-160			14.0	20	
	25.0 5.00	23.0 4.67	4.68	92.0 93.4	93.6				0.214	20	
lethylene Chloride	5.00	4.07	4.00	33.4	93.0	67.0-120			0.214	20	
A	CCOUNT:			PR	OJECT:		SDG:			DATE/TIME:	PAGE:
	ngineers - KS				52-73682		L12653			10/05/20 12:26	63 of 86

QUALITY CONTROL SUMMARY

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
4-Methyl-2-pentanone (MIBK)	25.0	23.0	19.8	92.0	79.2	68.0-142			15.0	20	
Methyl tert-butyl ether	5.00	4.85	4.60	97.0	92.0	68.0-125			5.29	20	
Naphthalene	5.00	4.75	4.41	95.0	88.2	54.0-135			7.42	20	
n-Propylbenzene	5.00	5.43	5.38	109	108	77.0-124			0.925	20	
Styrene	5.00	4.98	5.05	99.6	101	73.0-130			1.40	20	
1,1,1,2-Tetrachloroethane	5.00	5.13	4.95	103	99.0	75.0-125			3.57	20	
1,1,2,2-Tetrachloroethane	5.00	5.53	4.95	111	99.0	65.0-130			11.1	20	
Tetrachloroethene	5.00	5.01	5.09	100	102	72.0-132			1.58	20	
Toluene	5.00	5.42	5.28	108	106	79.0-120			2.62	20	
1,1,2-Trichlorotrifluoroethane	5.00	5.14	4.82	103	96.4	69.0-132			6.43	20	
1,2,3-Trichlorobenzene	5.00	4.66	4.66	93.2	93.2	50.0-138			0.000	20	
1,2,4-Trichlorobenzene	5.00	4.32	4.35	86.4	87.0	57.0-137			0.692	20	
1,1,1-Trichloroethane	5.00	4.61	4.66	92.2	93.2	73.0-124			1.08	20	
1,1,2-Trichloroethane	5.00	5.36	5.20	107	104	80.0-120			3.03	20	
Trichloroethene	5.00	4.98	5.10	99.6	102	78.0-124			2.38	20	
Trichlorofluoromethane	5.00	4.22	4.16	84.4	83.2	59.0-147			1.43	20	
1,2,3-Trichloropropane	5.00	5.00	4.35	100	87.0	73.0-130			13.9	20	
1,2,3-Trimethylbenzene	5.00	4.99	4.76	99.8	95.2	77.0-120			4.72	20	
1,2,4-Trimethylbenzene	5.00	5.16	5.13	103	103	76.0-121			0.583	20	
1,3,5-Trimethylbenzene	5.00	5.27	5.17	105	103	76.0-122			1.92	20	
Vinyl chloride	5.00	5.22	5.04	104	101	67.0-131			3.51	20	
Xylenes, Total	15.0	15.5	15.2	103	101	79.0-123			1.95	20	
(S) Toluene-d8				108	106	80.0-120					
(S) 4-Bromofluorobenzene				102	105	77.0-126					
(S) 1,2-Dichloroethane-d4				99.3	94.5	70.0-130					

PROJECT: C4-052-73682 SDG: L1265359 DATE/TIME: 10/05/20 12:26

PAGE: 64 of 86

QUALITY CONTROL SUMMARY L1265359-01,02,03,04,14

ONE LAB. NATIONWIDE.

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

wethod Blank (WB))				1 Cp
(MB) R3576841-2 10/01/20	0 10:19				Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	Tc
Benzene	U		0.0941	1.00	
(S) Toluene-d8	103			80.0-120	³ Ss
(S) 4-Bromofluorobenzene	88.4			77.0-126	00
(S) 1,2-Dichloroethane-d4	114			70.0-130	4
					Cn

Laboratory Control Sample (LCS)

(LCS) R3576841-1 10/01/20	0 08:30				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Benzene	5.00	5.36	107	70.0-123	
(S) Toluene-d8			102	80.0-120	
(S) 4-Bromofluorobenzene			98.9	77.0-126	
(S) 1,2-Dichloroethane-d4			112	70.0-130	

DATE/TIME: 10/05/20 12:26 Semi-Volatile Organic Compounds (GC) by Method KS MRH/HRH

QUALITY CONTROL SUMMARY L1265359-01,02,03,04,05,06,07,08,09,10,11,14,15

⁴Cn

Sr

Qc

GI

Â

Sc

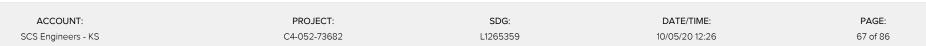
Method Blank (MB)

Method Blank (ME)				1
(MB) R3577378-1 10/02/2	20 12:48				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	Ĩ
MRH (C9-C18)	U		7.54	100	L
HRH (C19-C35)	U		8.05	100	
(S) 1-Chloro-octadecane	95.0			40.0-140	
					_

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3577378-2 10/02/	/20 13:10 • (LCSI	D) R3577378-3	10/02/20 13:3	3						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
MRH (C9-C18)	1200	1010	1050	84.2	87.5	40.0-140			3.88	25
HRH (C19-C35)	1600	1740	1750	109	109	40.0-140			0.573	25
(S) 1-Chloro-octadecane				104	104	40.0-140				

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1265359 DATE/TIME: 10/05/20 12:26


PAGE: 66 of 86 Pesticides (GC) by Method 8081B

QUALITY CONTROL SUMMARY

(MB) R3576013-1 09/29/20	0 09:17				L
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	1
Aldrin	U		0.0198	0.0500	
Alpha BHC	U		0.0172	0.0500	3
Beta BHC	U		0.0208	0.0500	L
Delta BHC	U		0.0150	0.0500	4
Gamma BHC	U		0.0209	0.0500	
4,4-DDD	U		0.0177	0.0500	
4,4-DDE	U		0.0154	0.0500	5
4,4-DDT	U		0.0198	0.0500	
Dieldrin	U		0.0162	0.0500	6
Endosulfan I	U		0.0160	0.0500	
Endosulfan II	U		0.0164	0.0500	
Endosulfan sulfate	U		0.0217	0.0500	7
Endrin	U		0.0161	0.0500	L
Endrin aldehyde	U		0.0237	0.0500	8
Endrin ketone	U		0.0219	0.0500	
Heptachlor	U		0.0148	0.0500	
Heptachlor epoxide	U		0.0183	0.0500	9
Hexachlorobenzene	U		0.0176	0.0500	L
Methoxychlor	U		0.0193	0.0500	
Chlordane	U		0.0198	5.00	
Toxaphene	U		0.168	0.500	
(S) Decachlorobiphenyl	86.5			10.0-128	
(S) Tetrachloro-m-xylene	72.0			10.0-127	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3576013-2 09/29	/20 09:32 • (LCS	SD) R3576013-	3 09/29/20 09	9:46						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Aldrin	1.00	0.753	0.759	75.3	75.9	22.0-124			0.794	34
Alpha BHC	1.00	0.837	0.879	83.7	87.9	54.0-130			4.90	23
Beta BHC	1.00	0.859	0.903	85.9	90.3	53.0-136			4.99	20
Delta BHC	1.00	0.874	0.922	87.4	92.2	54.0-133			5.35	20
Gamma BHC	1.00	0.847	0.892	84.7	89.2	55.0-129			5.18	20
4,4-DDD	1.00	0.863	0.898	86.3	89.8	56.0-140			3.98	22
4,4-DDE	1.00	0.854	0.883	85.4	88.3	52.0-128			3.34	22
4,4-DDT	1.00	0.801	0.829	80.1	82.9	50.0-141			3.44	23
Dieldrin	1.00	0.917	0.959	91.7	95.9	59.0-133			4.48	20
Endosulfan I	1.00	0.832	0.868	83.2	86.8	57.0-131			4.24	20

Τс

Ss

Cn

Sr

ິQc

GI

Â

°Sc

Pesticides (GC) by Method 8081B

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Calles Americat	LCC Desult	LCSD Result		LCSD Rec.	Dee Limite	LCC Qualifian		ססס	RPD Limits
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Endosulfan II	1.00	0.834	0.872	83.4	87.2	58.0-133			4.45	20
Endosulfan sulfate	1.00	0.861	0.900	86.1	90.0	58.0-133			4.43	21
Endrin	1.00	0.880	0.914	88.0	91.4	57.0-134			3.79	21
Endrin aldehyde	1.00	0.827	0.858	82.7	85.8	53.0-129			3.68	20
Endrin ketone	1.00	0.907	0.951	90.7	95.1	60.0-145			4.74	20
Heptachlor	1.00	0.769	0.782	76.9	78.2	27.0-132			1.68	31
Heptachlor epoxide	1.00	0.829	0.870	82.9	87.0	57.0-130			4.83	20
Hexachlorobenzene	1.00	0.772	0.779	77.2	77.9	30.0-114			0.903	30
Methoxychlor	1.00	0.906	0.933	90.6	93.3	54.0-155			2.94	24
(S) Decachlorobiphenyl				73.3	82.7	10.0-128				
(S) Tetrachloro-m-xylene				65.5	65.5	10.0-127				

SDG: L1265359 DATE/TIME: 10/05/20 12:26

PAGE: 68 of 86

QUALITY CONTROL SUMMARY L1265359-01,02,03,04,05,06,07,08,09,10,11,14

Ср

Method Blank (MB)

(MB) R3576112-2 09/29/2						I.	<u> </u>
Analista	MB Result	MB Qualifier	MB MDL	MB RDL			² Tc
Analyte	ug/l		ug/l	ug/l			
Acenaphthene	U		0.0886	1.00			3
Acenaphthylene	U		0.0921	1.00			³ Ss
Anthracene	U		0.0804	1.00			
Benzidine	U		3.74	10.0			⁴ Cn
Benzo(a)anthracene	U		0.199	1.00			
Benzo(b)fluoranthene	U		0.130	1.00			-
Benzo(k)fluoranthene	U		0.120	1.00			[°] Sr
Benzo(g,h,i)perylene	U		0.121	1.00			
Benzo(a)pyrene	U		0.0381	1.00			6
Bis(2-chlorethoxy)methane	U		0.116	10.0			ိုင
Bis(2-chloroethyl)ether	U		0.137	10.0			
2,2-Oxybis(1-Chloropropane)	U		0.210	10.0			GI
4-Bromophenyl-phenylether	U		0.0877	10.0			
2-Chloronaphthalene	U		0.0648	1.00			8
4-Chlorophenyl-phenylether	U		0.0926	10.0			Ă
Chrysene	U		0.130	1.00			
Dibenz(a,h)anthracene	U		0.0644	1.00			Sc
,2-Dichlorobenzene	U		0.0713	10.0			
,3-Dichlorobenzene	U		0.132	10.0			
,4-Dichlorobenzene	U		0.0942	10.0			
3,3-Dichlorobenzidine	U		0.212	10.0			
2,4-Dinitrotoluene	U		0.0983	10.0			
2,6-Dinitrotoluene	U		0.250	10.0			
Fluoranthene	U		0.102	1.00			
Fluorene	U		0.0844	1.00			
Hexachlorobenzene	U		0.0755	1.00			
Hexachloro-1,3-butadiene	U		0.0968	10.0			
Hexachlorocyclopentadiene	U		0.0598	10.0			
Hexachloroethane	U		0.127	10.0			
ndeno(1,2,3-cd)pyrene	U		0.279	1.00			
sophorone	U		0.143	10.0			
Naphthalene	U		0.159	1.00			
Nitrobenzene	U		0.297	10.0			
n-Nitrosodimethylamine	U		0.998	10.0			
n-Nitrosodiphenylamine	U		2.37	10.0			
n-Nitrosodi-n-propylamine	U		0.261	10.0			
Phenanthrene	U		0.112	1.00			
Benzylbutyl phthalate	U		0.765	3.00			
Bis(2-ethylhexyl)phthalate	U		0.895	3.00			
Di-n-butyl phthalate	U		0.453	3.00			
si il satyl pittididte	0		0.100	0.00			

SCS Engineers - KS

C4-052-73682

L1265359

10/05/20 12:26

69 of 86

QUALITY CONTROL SUMMARY L1265359-01.02.03.04.05.06.07.08.09.10.11.14

Тс

Ss

Cn

Śr

[°]Qc

GI

A

Sc

Method Blank (MB)

Analyte	MB Result ug/l	MB Qualifier	MB MDL		
Analyte	ug/l			MB RDL	
Analyte	5		ug/l	ug/l	
Diethyl phthalate	U		0.287	3.00	
Dimethyl phthalate	U		0.260	3.00	
Di-n-octyl phthalate	U		0.932	3.00	
Pyrene	U		0.107	1.00	
1,2,4-Trichlorobenzene	U		0.0698	10.0	
4-Chloro-3-methylphenol	U		0.131	10.0	
2-Chlorophenol	U		0.133	10.0	
2,4-Dichlorophenol	U		0.102	10.0	
2,4-Dimethylphenol	U		0.0636	10.0	
4,6-Dinitro-2-methylphenol	U		1.12	10.0	
2,4-Dinitrophenol	U		5.93	10.0	
2-Nitrophenol	U		0.117	10.0	
4-Nitrophenol	U		0.143	10.0	
Pentachlorophenol	U		0.313	10.0	
Phenol	U		4.33	10.0	
2,4,6-Trichlorophenol	U		0.100	10.0	
(S) 2-Fluorophenol	41.2			10.0-120	
(S) Phenol-d5	24.7			10.0-120	
(S) Nitrobenzene-d5	61.6			10.0-127	
(S) 2-Fluorobiphenyl	74.0			10.0-130	
(S) 2,4,6-Tribromophenol	66.5			10.0-155	
(S) p-Terphenyl-d14	78.4			10.0-128	

Laboratory Control Sample (LCS)

(LCS) R3576112-1 09/29/	20 18:24					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	ug/l	ug/l	%	%		
Acenaphthene	50.0	41.6	83.2	41.0-120		
Acenaphthylene	50.0	44.7	89.4	43.0-120		
Anthracene	50.0	46.0	92.0	45.0-120		
Benzidine	100	33.7	33.7	10.0-120		
Benzo(a)anthracene	50.0	45.9	91.8	47.0-120		
Benzo(b)fluoranthene	50.0	47.3	94.6	46.0-120		
Benzo(k)fluoranthene	50.0	48.6	97.2	46.0-120		
Benzo(g,h,i)perylene	50.0	48.8	97.6	48.0-121		
Benzo(a)pyrene	50.0	51.6	103	47.0-120		
Bis(2-chlorethoxy)methane	50.0	38.7	77.4	33.0-120		
Bis(2-chloroethyl)ether	50.0	47.6	95.2	23.0-120		
4	ACCOUNT:			PRO	CT: SDG: DATE/TIME:	PAGE:

SCS Engineers - KS

C4-052-73682

SDG: L1265359 DATE/TIME: 10/05/20 12:26

PAGE: 70 of 86

QUALITY CONTROL SUMMARY L1265359-01.02.03.04.05.06.07.08.09.10.11.14

Laboratory Control Sample (LCS)

(LCS) R3576112-1 09/29/20 18:24

	Spike Amount		LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	ug/l	ug/l	%	%		
2,2-Oxybis(1-Chloropropane)	50.0	41.5	83.0	28.0-120		L
4-Bromophenyl-phenylether	50.0	43.7	87.4	45.0-120		
2-Chloronaphthalene	50.0	42.6	85.2	37.0-120		
4-Chlorophenyl-phenylether	50.0	45.8	91.6	44.0-120		
Chrysene	50.0	46.1	92.2	48.0-120		
Dibenz(a,h)anthracene	50.0	49.4	98.8	47.0-120		L
1,2-Dichlorobenzene	50.0	42.8	85.6	20.0-120		
1,3-Dichlorobenzene	50.0	42.4	84.8	17.0-120		
1,4-Dichlorobenzene	50.0	41.7	83.4	18.0-120		
3,3-Dichlorobenzidine	100	98.4	98.4	44.0-120		
2,4-Dinitrotoluene	50.0	47.6	95.2	49.0-124		
2,6-Dinitrotoluene	50.0	45.6	91.2	46.0-120		
Fluoranthene	50.0	48.4	96.8	51.0-120		
Fluorene	50.0	45.6	91.2	47.0-120		
Hexachlorobenzene	50.0	43.8	87.6	44.0-120		
Hexachloro-1,3-butadiene	50.0	37.3	74.6	19.0-120		l
Hexachlorocyclopentadiene	50.0	29.6	59.2	15.0-120		
Hexachloroethane	50.0	42.1	84.2	15.0-120		
Indeno(1,2,3-cd)pyrene	50.0	48.5	97.0	49.0-122		
Isophorone	50.0	36.1	72.2	36.0-120		
Naphthalene	50.0	38.2	76.4	27.0-120		
Nitrobenzene	50.0	38.2	76.4	27.0-120		
n-Nitrosodimethylamine	50.0	25.1	50.2	10.0-120		
n-Nitrosodiphenylamine	50.0	44.9	89.8	47.0-120		
n-Nitrosodi-n-propylamine	50.0	40.4	80.8	31.0-120		
Phenanthrene	50.0	44.8	89.6	46.0-120		
Benzylbutyl phthalate	50.0	49.4	98.8	43.0-121		
Bis(2-ethylhexyl)phthalate	50.0	48.2	96.4	43.0-122		
Di-n-butyl phthalate	50.0	50.0	100	49.0-121		
Diethyl phthalate	50.0	44.8	89.6	48.0-122		
Dimethyl phthalate	50.0	46.4	92.8	48.0-120		
Di-n-octyl phthalate	50.0	50.1	100	42.0-125		
Pyrene	50.0	46.2	92.4	47.0-120		
1,2,4-Trichlorobenzene	50.0	37.3	74.6	24.0-120		
4-Chloro-3-methylphenol	50.0	37.5	75.0	40.0-120		
2-Chlorophenol	50.0	40.4	80.8	25.0-120		
2,4-Dichlorophenol	50.0	38.8	77.6	36.0-120		
2,4-Dimethylphenol	50.0	38.7	77.4	33.0-120		
4,6-Dinitro-2-methylphenol	50.0	41.3	82.6	38.0-138		
2,4-Dinitrophenol	50.0	39.0	78.0	10.0-120		

SCS Engineers - KS

C4-052-73682

L1265359

DATE/TIME: 10/05/20 12:26

PAGE: 71 of 86

QUALITY CONTROL SUMMARY L1265359-01.02.03.04.05.06.07.08.09.10.11.14

LCS Qualifier

(LCS) R3576112-1 09/29/20 18:24

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	ug/l	ug/l	%	%
2-Nitrophenol	50.0	39.6	79.2	31.0-120
4-Nitrophenol	50.0	14.8	29.6	10.0-120
Pentachlorophenol	50.0	40.0	80.0	23.0-120
Phenol	50.0	15.3	30.6	10.0-120
2,4,6-Trichlorophenol	50.0	43.4	86.8	42.0-120
(S) 2-Fluorophenol			49.2	10.0-120
(S) Phenol-d5			29.2	10.0-120
(S) Nitrobenzene-d5			63.8	10.0-127
(S) 2-Fluorobiphenyl			85.5	10.0-130
(S) 2,4,6-Tribromophenol			86.5	10.0-155
(S) p-Terphenyl-d14			89.3	10.0-128

L1264834-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Acenaphthene	45.5	ND	37.9	38.1	83.3	83.7	1	28.0-120			0.526	25	
Acenaphthylene	45.5	ND	41.4	40.7	91.0	89.5	1	31.0-121			1.71	25	
Anthracene	45.5	ND	43.0	42.5	94.5	93.4	1	36.0-120			1.17	23	
Benzidine	91.0	ND	27.6	38.8	30.3	42.6	1	10.0-120			33.7	37	
Benzo(a)anthracene	45.5	ND	41.4	41.7	91.0	91.6	1	39.0-120			0.722	23	
Benzo(b)fluoranthene	45.5	ND	42.2	42.6	92.7	93.6	1	37.0-120			0.943	23	
Benzo(k)fluoranthene	45.5	ND	43.6	43.7	95.8	96.0	1	37.0-120			0.229	26	
Benzo(g,h,i)perylene	45.5	ND	42.6	43.6	93.6	95.8	1	37.0-123			2.32	25	
Benzo(a)pyrene	45.5	ND	46.0	47.0	101	103	1	37.0-120			2.15	24	
Bis(2-chlorethoxy)methane	45.5	ND	35.7	34.7	78.5	76.3	1	17.0-120			2.84	31	
Bis(2-chloroethyl)ether	45.5	ND	41.8	41.5	91.9	91.2	1	14.0-120			0.720	33	
2,2-Oxybis(1-Chloropropane)	45.5	ND	36.7	36.3	80.7	79.8	1	18.0-120			1.10	34	
4-Bromophenyl-phenylether	45.5	ND	41.5	40.8	91.2	89.7	1	37.0-120			1.70	24	
2-Chloronaphthalene	45.5	ND	39.7	38.1	87.3	83.7	1	29.0-120			4.11	28	
4-Chlorophenyl-phenylether	45.5	ND	41.8	42.0	91.9	92.3	1	36.0-120			0.477	23	
Chrysene	45.5	ND	41.5	41.6	91.2	91.4	1	38.0-120			0.241	23	
Dibenz(a,h)anthracene	45.5	ND	43.3	44.3	95.2	97.4	1	36.0-121			2.28	24	
3,3-Dichlorobenzidine	91.0	ND	89.0	91.6	97.8	101	1	10.0-134			2.88	30	
2,4-Dinitrotoluene	45.5	ND	43.5	44.5	95.6	97.8	1	39.0-125			2.27	25	
2,6-Dinitrotoluene	45.5	ND	41.9	42.2	92.1	92.7	1	36.0-120			0.713	27	
Fluoranthene	45.5	ND	44.5	43.7	97.8	96.0	1	41.0-121			1.81	22	
Fluorene	45.5	ND	42.0	41.7	92.3	91.6	1	37.0-120			0.717	24	

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 SCS Engineers - KS
 C4-052-73682
 L1265359
 10/05/20 12:26
 72 of 86

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

L1265359-01,02,03,04,05,06,07,08,09,10,11,14

L1264834-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Hexachlorobenzene	45.5	ND	40.5	40.3	89.0	88.6	1	35.0-122			0.495	24	
Hexachloro-1,3-butadiene	45.5	ND	34.7	33.9	76.3	74.5	1	12.0-120			2.33	34	
Hexachlorocyclopentadiene	45.5	ND	26.5	26.7	58.2	58.7	1	10.0-120			0.752	33	
Hexachloroethane	45.5	ND	39.0	37.9	85.7	83.3	1	10.0-120			2.86	40	
ndeno(1,2,3-cd)pyrene	45.5	ND	43.1	44.4	94.7	97.6	1	38.0-125			2.97	24	
Isophorone	45.5	ND	34.0	32.0	74.7	70.3	1	21.0-120			6.06	27	
Naphthalene	45.5	ND	35.1	34.1	77.1	74.9	1	10.0-120			2.89	31	
Nitrobenzene	45.5	ND	34.0	34.7	74.7	76.3	1	12.0-120			2.04	30	
n-Nitrosodimethylamine	45.5	ND	22.4	19.9	49.2	43.7	1	10.0-120			11.8	40	
n-Nitrosodiphenylamine	45.5	ND	42.2	41.7	92.7	91.6	1	37.0-120			1.19	24	
n-Nitrosodi-n-propylamine	45.5	ND	36.3	34.6	79.8	76.0	1	16.0-120			4.80	30	
Phenanthrene	45.5	ND	41.7	41.0	91.6	90.1	1	33.0-120			1.69	22	
Benzylbutyl phthalate	45.5	ND	41.7	41.0	91.0	100	1	34.0-126			1.09	24	
1,2-Dichlorobenzene	45.5	ND	39.5	38.2	86.8	84.0	1	18.0-120			3.35	40	
Bis(2-ethylhexyl)phthalate	45.5 45.5	ND	42.9	43.6	94.3	95.8	1	33.0-126			1.62	25	
1,3-Dichlorobenzene		ND	39.6	37.7	87.0	82.9	1	15.0-120			4.92	40	
Di-n-butyl phthalate	45.5	ND	46.4	46.2	102	102	1	35.0-128			0.432	23	
,4-Dichlorobenzene	45.5	ND	39.1	37.5	85.9	82.4	1	17.0-120			4.18	40	
Diethyl phthalate	45.5	ND	41.3	41.6	90.8	91.4	1	39.0-125			0.724	24	
Dimethyl phthalate	45.5	ND	42.8	42.6	94.1	93.6	1	37.0-120			0.468	24	
Di-n-octyl phthalate	45.5	ND	44.4	46.1	97.6	101	1	25.0-135			3.76	26	
Pyrene	45.5	ND	41.9	42.8	92.1	94.1	1	39.0-120			2.13	22	
1,2,4-Trichlorobenzene	45.5	ND	34.8	33.8	76.5	74.3	1	15.0-120			2.92	31	
4-Chloro-3-methylphenol	45.5	ND	35.2	34.7	77.4	76.3	1	26.0-120			1.43	27	
2-Chlorophenol	45.5	ND	35.7	35.3	78.5	77.6	1	18.0-120			1.13	34	
2,4-Dichlorophenol	45.5	ND	35.6	34.9	78.2	76.7	1	19.0-120			1.99	27	
2,4-Dimethylphenol	45.5	ND	32.7	35.0	71.9	76.9	1	15.0-120			6.79	28	
4,6-Dinitro-2-methylphenol	45.5	ND	38.6	38.6	84.8	84.8	1	10.0-144			0.000	39	
2,4-Dinitrophenol	45.5	ND	36.0	36.8	79.1	80.9	1	10.0-120			2.20	40	
2-Nitrophenol	45.5	ND	36.0	35.4	79.1	77.8	1	20.0-120			1.68	30	
4-Nitrophenol	45.5	ND	12.5	12.8	27.5	28.1	1	10.0-120			2.37	40	
Pentachlorophenol	45.5	ND	38.5	37.9	84.6	83.3	1	10.0-128			1.57	37	
Phenol	45.5	ND	15.0	14.2	33.0	31.2	1	10.0-120			5.48	40	
2,4,6-Trichlorophenol	45.5	ND	39.7	38.8	87.3	85.3	1	26.0-120			2.29	31	
(S) 2-Fluorophenol					46.9	46.0		10.0-120					
(S) Phenol-d5					26.4	26.6		10.0-120					
(S) Nitrobenzene-d5					61.1	63.6		10.0-127					
(S) 2-Fluorobiphenyl					86.0	83.1		10.0-130					
(S) 2,4,6-Tribromophenol					87.9	87.9		10.0-155					
(S) p-Terphenyl-d14					88.0	90.5		10.0-128					
(-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						>							
Δ	ACCOUNT:			PRC	JECT:			SDG:		DATE/	TIME:		PAGE:
SCS	Engineers - KS			C4-05	2-73682		11	265359		10/05/2	0 12:26		73 of 86

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method Blank (MB)

(MB) R3575404-2 09/27/2	20 17:37					Ср
	MB Result	MB Qualifier	MB MDL	MB RDL		2
Analyte	ug/l		ug/l	ug/l		Tc
Acenaphthene	U		0.0886	1.00		
Acenaphthylene	U		0.0921	1.00		³Ss
Anthracene	U		0.0804	1.00		
Benzidine	U		3.74	10.0		4
Benzo(a)anthracene	U		0.199	1.00		^⁴ Cn
Benzo(b)fluoranthene	U		0.130	1.00		
Benzo(k)fluoranthene	U		0.120	1.00		⁵ Sr
Benzo(g,h,i)perylene	U		0.121	1.00		
Benzo(a)pyrene	U		0.0381	1.00		6
Bis(2-chlorethoxy)methane	U		0.116	10.0		ဳQ၀
Bis(2-chloroethyl)ether	U		0.137	10.0		
2,2-oxybis(1-chloropropane)	U		0.210	10.0		⁷ Gl
4-Bromophenyl-phenylether	U		0.0877	10.0		
2-Chloronaphthalene	U		0.0648	1.00		8
4-Chlorophenyl-phenylether	U		0.0926	10.0		Å
Chrysene	U		0.130	1.00		
Dibenz(a,h)anthracene	U		0.0644	1.00		⁹ Sc
1,2-Dichlorobenzene	U		0.0713	10.0		
1,3-Dichlorobenzene	U		0.132	10.0		
1,4-Dichlorobenzene	U		0.0942	10.0		
3,3-Dichlorobenzidine	U		0.212	10.0		
2,4-Dinitrotoluene	U		0.0983	10.0		
2,6-Dinitrotoluene	U		0.250	10.0		
Fluoranthene	U		0.102	1.00		
Fluorene	U		0.0844	1.00		
Hexachlorobenzene	U		0.0755	1.00		
Hexachloro-1,3-butadiene	U		0.0968	10.0		
Hexachlorocyclopentadiene	U		0.0598	10.0		
Hexachloroethane	U		0.127	10.0		
Indeno(1,2,3-cd)pyrene	U		0.279	1.00		
Isophorone	U		0.143	10.0		
Naphthalene	0.212	J	0.159	1.00		
Nitrobenzene	U	-	0.297	10.0		
n-Nitrosodimethylamine	U		0.998	10.0		
n-Nitrosodiphenylamine	U		2.37	10.0		
n-Nitrosodi-n-propylamine	U		0.261	10.0		
Phenanthrene	U		0.112	1.00		
Benzylbutyl phthalate	U		0.765	3.00		
Bis(2-ethylhexyl)phthalate	U		0.895	3.00		
Di-n-butyl phthalate	U		0.453	3.00		
5	-			0		

SCS Engineers - KS

C4-052-73682

SDG: L1265359 DATE/TIME: 10/05/20 12:26 PAGE: 74 of 86

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method Blank (MB)

(MB) R3575404-2 09/27/	/20 17:37				- Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	² Tc
Diethyl phthalate	U		0.287	3.00	
Dimethyl phthalate	U		0.260	3.00	³ Ss
Di-n-octyl phthalate	U		0.932	3.00	
Pyrene	U		0.107	1.00	4
1,2,4-Trichlorobenzene	U		0.0698	10.0	⁴Cn
4-Chloro-3-methylphenol	U		0.131	10.0	
2-Chlorophenol	U		0.133	10.0	⁵ Sr
2-Nitrophenol	U		0.117	10.0	
4-Nitrophenol	U		0.143	10.0	6
Pentachlorophenol	U		0.313	10.0	⁶ Qc
Phenol	U		4.33	10.0	
2,4,6-Trichlorophenol	U		0.100	10.0	⁷ Gl
2,4-Dichlorophenol	U		0.102	10.0	
2,4-Dimethylphenol	U		0.0636	10.0	8
4,6-Dinitro-2-methylphenol	U		1.12	10.0	ĨAĬ
2,4-Dinitrophenol	U		5.93	10.0	
(S) Nitrobenzene-d5	39.3			10.0-127	⁹ Sc
(S) 2-Fluorobiphenyl	49.6			10.0-130	
(S) p-Terphenyl-d14	54.8			10.0-128	
(S) Phenol-d5	19.5			10.0-120	
(S) 2-Fluorophenol	31.4			10.0-120	
(S) 2,4,6-Tribromophenol	48.8			10.0-155	

Laboratory Control Sample (LCS)

(LCS) R3575404-1 09/27/	/20 17:16					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	ug/l	ug/l	%	%		
Acenaphthene	50.0	36.5	73.0	41.0-120		
Acenaphthylene	50.0	40.1	80.2	43.0-120		
Anthracene	50.0	40.7	81.4	45.0-120		
Benzidine	100	4.76	4.76	10.0-120	<u>J4</u>	
Benzo(a)anthracene	50.0	43.9	87.8	47.0-120		
Benzo(b)fluoranthene	50.0	42.7	85.4	46.0-120		
Benzo(k)fluoranthene	50.0	41.1	82.2	46.0-120		
Benzo(g,h,i)perylene	50.0	47.7	95.4	48.0-121		
Benzo(a)pyrene	50.0	45.8	91.6	47.0-120		
Bis(2-chlorethoxy)methane	50.0	30.8	61.6	33.0-120		
Bis(2-chloroethyl)ether	50.0	38.6	77.2	23.0-120		
	CCOUNT:				CT: SDG: DATE/TIME:	PAGE:

C4-052-73682

SDG: L1265359 DATE/TIME: 10/05/20 12:26

PAGE: 75 of 86

QUALITY CONTROL SUMMARY

L1265359-15

Тс

Ss

Cn

Sr

ິQc

GI

Â

°Sc

Laboratory Control Sample (LCS)

(LCS) R3575404-1 09/27/20 17:16

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	ug/l	ug/l	%	%		
2,2-oxybis(1-chloropropane)	50.0	38.4	76.8	28.0-120		
4-Bromophenyl-phenylether	50.0	46.3	92.6	45.0-120		
2-Chloronaphthalene	50.0	38.7	77.4	37.0-120		
4-Chlorophenyl-phenylether	50.0	42.1	84.2	44.0-120		
Chrysene	50.0	39.9	79.8	48.0-120		
Dibenz(a,h)anthracene	50.0	46.9	93.8	47.0-120		
3,3-Dichlorobenzidine	100	80.5	80.5	44.0-120		
2,4-Dinitrotoluene	50.0	45.8	91.6	49.0-124		
2,6-Dinitrotoluene	50.0	41.8	83.6	46.0-120		
Fluoranthene	50.0	44.5	89.0	51.0-120		
Fluorene	50.0	40.0	80.0	47.0-120		
Hexachlorobenzene	50.0	48.7	97.4	44.0-120		
Hexachloro-1,3-butadiene	50.0	42.2	84.4	19.0-120		
Hexachlorocyclopentadiene	50.0	30.6	61.2	15.0-120		
Hexachloroethane	50.0	38.1	76.2	15.0-120		
ndeno(1,2,3-cd)pyrene	50.0	48.1	96.2	49.0-122		
sophorone	50.0	33.3	66.6	36.0-120		
laphthalene	50.0	34.2	68.4	27.0-120		
litrobenzene	50.0	34.3	68.6	27.0-120		
n-Nitrosodimethylamine	50.0	27.0	54.0	10.0-120		
n-Nitrosodiphenylamine	50.0	38.9	77.8	47.0-120		
n-Nitrosodi-n-propylamine	50.0	39.3	78.6	31.0-120		
Phenanthrene	50.0	40.2	80.4	46.0-120		
Benzylbutyl phthalate	50.0	45.3	90.6	43.0-121		
Bis(2-ethylhexyl)phthalate	50.0	44.9	89.8	43.0-122		
Di-n-butyl phthalate	50.0	48.1	96.2	49.0-121		
Diethyl phthalate	50.0	47.3	94.6	48.0-122		
Dimethyl phthalate	50.0	42.7	85.4	48.0-120		
Di-n-octyl phthalate	50.0	42.2	84.4	42.0-125		
Pyrene	50.0	40.2	80.4	47.0-120		
,2,4-Trichlorobenzene	50.0	34.8	69.6	24.0-120		
4-Chloro-3-methylphenol	50.0	34.1	68.2	40.0-120		
2-Chlorophenol	50.0	36.7	73.4	25.0-120		
2,4-Dichlorophenol	50.0	34.7	69.4	36.0-120		
2,4-Dimethylphenol	50.0	38.7	77.4	33.0-120		
4,6-Dinitro-2-methylphenol	50.0	43.9	87.8	38.0-138		
2,4-Dinitrophenol	50.0	43.8	87.6	10.0-120		
2-Nitrophenol	50.0	39.8	79.6	31.0-120		
1-Nitrophenol	50.0	15.9	31.8	10.0-120		
Pentachlorophenol	50.0	44.2	88.4	23.0-120		
А	CCOUNT:			PRO	JECT: SDG: DATE/TIME:	PAGE:

C4-052-73682

SCS Engineers - KS

L1265359

10/05/20 12:26

76 of 86

QUALITY CONTROL SUMMARY

LCS Qualifier

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Laboratory Control Sample (LCS)

(LCS) R3575404-1 09/27/20 17:16

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	ug/l	ug/l	%	%
Phenol	50.0	12.6	25.2	10.0-120
2,4,6-Trichlorophenol	50.0	41.1	82.2	42.0-120
1,2-Dichlorobenzene	50.0	37.6	75.2	20.0-120
1,3-Dichlorobenzene	50.0	36.6	73.2	17.0-120
1,4-Dichlorobenzene	50.0	37.4	74.8	18.0-120
(S) Nitrobenzene-d5			59.8	10.0-127
(S) 2-Fluorobiphenyl			78.9	10.0-130
(S) p-Terphenyl-d14			82.3	10.0-128
(S) Phenol-d5			23.3	10.0-120
(S) 2-Fluorophenol			40.7	10.0-120
(S) 2,4,6-Tribromophenol			112	10.0-155

L1265922-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1265922-03 09/27												
	·	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Acenaphthene	50.0	3.32	37.9	36.3	69.2	66.0	1	28.0-120			4.31	25
Acenaphthylene	50.0	ND	38.0	35.6	76.0	71.2	1	31.0-121			6.52	25
Anthracene	50.0	ND	42.6	41.8	83.6	82.0	1	36.0-120			1.90	23
Benzidine	100	ND	ND	ND	0.000	0.000	1	10.0-120	<u>J6</u>	<u>J6</u>	0.000	37
Benzo(a)anthracene	50.0	ND	45.7	42.6	91.4	85.2	1	39.0-120			7.02	23
Benzo(b)fluoranthene	50.0	ND	43.4	40.8	86.8	81.6	1	37.0-120			6.18	23
Benzo(k)fluoranthene	50.0	ND	43.9	40.6	87.8	81.2	1	37.0-120			7.81	26
Benzo(g,h,i)perylene	50.0	ND	50.7	46.5	101	93.0	1	37.0-123			8.64	25
Benzo(a)pyrene	50.0	ND	48.6	45.2	97.2	90.4	1	37.0-120			7.25	24
Bis(2-chlorethoxy)methane	50.0	ND	27.9	28.3	55.8	56.6	1	17.0-120			1.42	31
Bis(2-chloroethyl)ether	50.0	ND	34.1	33.5	68.2	67.0	1	14.0-120			1.78	33
2,2-oxybis(1-chloropropane)	50.0	ND	32.9	34.0	65.8	68.0	1	18.0-120			3.29	34
4-Bromophenyl-phenylether	50.0	ND	47.5	45.2	95.0	90.4	1	37.0-120			4.96	24
2-Chloronaphthalene	50.0	ND	34.4	34.2	68.8	68.4	1	29.0-120			0.583	28
4-Chlorophenyl-phenylether	50.0	ND	41.2	39.4	82.4	78.8	1	36.0-120			4.47	23
Chrysene	50.0	ND	41.0	37.9	82.0	75.8	1	38.0-120			7.86	23
Dibenz(a,h)anthracene	50.0	ND	49.1	45.7	98.2	91.4	1	36.0-121			7.17	24
3,3-Dichlorobenzidine	100	ND	42.8	37.7	42.8	37.7	1	10.0-134			12.7	30
2,4-Dinitrotoluene	50.0	ND	46.7	45.1	93.4	90.2	1	39.0-125			3.49	25
2,6-Dinitrotoluene	50.0	ND	41.3	39.8	82.6	79.6	1	36.0-120			3.70	27
Fluoranthene	50.0	ND	46.5	44.2	92.5	87.9	1	41.0-121			5.07	22
Fluorene	50.0	ND	40.1	38.2	78.7	74.9	1	37.0-120			4.85	24

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 SCS Engineers - KS
 C4-052-73682
 L1265359
 10/05/20 12:26
 77 of 86

4,6-Dinitro-2-methylphenol

2,4-Dinitrophenol

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

Pentachlorophenol

2,4,6-Trichlorophenol

(S) Nitrobenzene-d5

(S) 2-Fluorobiphenyl (S) p-Terphenyl-d14

(S) 2-Fluorophenol

(S) 2,4,6-Tribromophenol

(S) Phenol-d5

2-Nitrophenol

4-Nitrophenol

Phenol

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

ACCOUNT:

SCS Engineers - KS

ND

QUALITY CONTROL SUMMARY

RPD Limits

%

24

34

33

40

24

27

31

30

40

24

30

22

24

25

23

24

24

26

22

31 27

34

27 28

39

40

40

40 40

30

40

37

40

31

2.99

9.64

1.24

3.88

2.83

2.94

6.38

6.97

0.873

4.15

DATE/TIME:

10/05/20 12:26

(OS) L1265922-03 09/27	()			()							
	•	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%
Hexachlorobenzene	50.0	ND	47.7	47.6	95.4	95.2	1	35.0-122			0.210
Hexachloro-1,3-butadiene	50.0	ND	37.6	37.2	75.2	74.4	1	12.0-120			1.07
Hexachlorocyclopentadiene	50.0	ND	31.2	31.1	62.4	62.2	1	10.0-120			0.321
Hexachloroethane	50.0	ND	36.2	34.3	72.4	68.6	1	10.0-120			5.39
Indeno(1,2,3-cd)pyrene	50.0	ND	52.3	49.4	105	98.8	1	38.0-125			5.70
Isophorone	50.0	ND	30.5	30.4	61.0	60.8	1	21.0-120			0.328
Naphthalene	50.0	17.4	45.9	43.2	57.0	51.6	1	10.0-120			6.06
Nitrobenzene	50.0	ND	30.3	30.0	60.6	60.0	1	12.0-120			0.995
n-Nitrosodimethylamine	50.0	ND	22.7	22.7	45.4	45.4	1	10.0-120			0.000
n-Nitrosodiphenylamine	50.0	ND	36.0	34.0	72.0	68.0	1	37.0-120			5.71
n-Nitrosodi-n-propylamine	50.0	ND	34.8	34.3	69.6	68.6	1	16.0-120			1.45
Phenanthrene	50.0	ND	42.5	40.4	84.0	79.8	1	33.0-120			5.07
Benzylbutyl phthalate	50.0	ND	49.5	45.8	99.0	91.6	1	34.0-126			7.76
Bis(2-ethylhexyl)phthalate	50.0	ND	47.3	44.3	94.6	88.6	1	33.0-126			6.55
Di-n-butyl phthalate	50.0	ND	49.9	47.9	99.8	95.8	1	35.0-128			4.09
Diethyl phthalate	50.0	ND	47.9	45.4	95.8	90.8	1	39.0-125			5.36
Dimethyl phthalate	50.0	ND	43.9	41.4	87.8	82.8	1	37.0-120			5.86
Di-n-octyl phthalate	50.0	ND	45.8	44.2	91.6	88.4	1	25.0-135			3.56
Pyrene	50.0	ND	41.9	38.8	83.3	77.1	1	39.0-120			7.68
1,2,4-Trichlorobenzene	50.0	ND	31.4	30.4	62.8	60.8	1	15.0-120			3.24
4-Chloro-3-methylphenol	50.0	ND	35.8	33.3	71.6	66.6	1	26.0-120			7.24
2-Chlorophenol	50.0	ND	30.9	30.4	61.8	60.8	1	18.0-120			1.63
2,4-Dichlorophenol	50.0	ND	31.7	30.8	63.4	61.6	1	19.0-120			2.88
2,4-Dimethylphenol	50.0	ND	37.7	34.9	74.3	68.7	1	15.0-120			7.71

95.2

104

65.0

63.0

64.6

76.0

35.6

104

22.8

78.8

56.6

68.9

87.3

21.2

34.7

119

PROJECT:

C4-052-73682

92.4

94.8

64.2

60.6

62.8

73.8

33.4

97.0

23.0

75.6

57.0

69.4

82.7

21.8

34.6

115

1

1

1

1

1

1

1

1

1

10.0-144

10.0-120

18.0-120

15.0-120

17.0-120

20.0-120

10.0-120

10.0-128

10.0-120

26.0-120

10.0-127

10.0-130

10.0-128

10.0-120

10.0-120

10.0-155

SDG:

L1265359

Sc

PAGE:

78 of 86

46.2

47.4

32.1

30.3

31.4

36.9

16.7

48.5

11.5

37.8

47.6

52.2

32.5

31.5

32.3

38.0

17.8

52.0

11.4

39.4

QUALITY CONTROL SUMMARY

L1265922-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1265922-03 09/27	/20 19:45 • (MS)	R3575404-3	09/27/20 20:0	6 • (MSD) R357	75404-4 09/2	7/20 20:28						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%

Sample Narrative:

OS: Dilution due to sample volume.

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1265359 DATE/TIME: 10/05/20 12:26

PAGE: 79 of 86

GLOSSARY OF TERMS

*

Тс

ŚS

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
JO	JO: The identification of the analyte is acceptable, but the reported concentration is an estimate. The calibration met method criteria.
J4	The associated batch QC was outside the established quality control range for accuracy.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
Р	RPD between the primary and confirmatory analysis exceeded 40%.

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshi
Arkansas	88-0469	New Jersey-1
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina
Georgia	NELAP	North Carolina
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio–VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolin
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ¹⁴
Louisiana 1	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

lebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

C4-052-73682

L1265359

PAGE: 81 of 86

10/05/20 12:26

	1000		Billing Info	ormation:	5-1 · · ·	12	-	1	A	nalvsis /	Contai	ner / Pr	eservative				Chain of Custo	dy Page of _							
SCS Engineers - KS	turili i			Accounts Payable							and a second sec					1	A IL	L.	-					Par	e Analytical*
3575 W. 110th Street Overland Park, KS 66210	land Park, KS 66210			d Park, KS 66					tiller	K B							Nettons	I Canter for Testing & anovat							
Report to: Doug Dreiling				Email To: ddrelling@scsengineers.com				Ş	1 all	8270	CI-BT						12065 Lebanon I Mount Juliet, TN Phone: 615-758-	37122 115 114 15							
Project Description: Former City Garage Operations			Please C PT MT (НÖ	NoPre	A D	res	H-dm						Phone: 800-767- Fax: 615-758-58	5859									
hone: 913-681-0030	Client Project C4-052-73			Lab Project #	S-C40527368	32	40mlAmb HCI	Amb-NoPres	HDPE-HNO3	Amb NoPres	tomIA							165359							
Collected by (print): July July 201	Site/Facility I			P.O. #			LRH 40n	100ml	dOHIO	nl Am	HRH 2	HCI-BI					Table # Acctnum: A(QUAOPKS							
Collected by (signature): Ahr P A- mmediately Packed on Ice N Y Y		y 10 D	and all all all all all all all all all al	Quote # Date Res	ults Needed	No.	Full Scan, LF	- 8081	Metals 250ml	- 8270 100ml Amb NoPres 82 LVI - MRH / HRH 40mlAmb-HCI-BT		40mlAmb-HCI-Blk					Template: T174283 Prelogin: P797834 PM: 206 - Jeff Carr PB:								
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	82601	Pesticides	RCRA	svocs	TPHKSLVI	V8260					Shipped Via: Remarks	Sample # (lab only							
PB-1A	G	GW		9/21/20	1505	10	X	X	x	X	X	5.0						1-01							
PB-2	6	GW		9/21/20	1530	10	x	x	x	X	X			3775			12-24 20 21	-02							
PB-3	G	GW	1.2.2	9/21/20	1245	10	X	X	X	Х	X					Torrita de	···	-03							
		GW	1	- Carlos de		10	x	x	X	X	x	-	JJ			÷									
		GW		2.000		10	X	x	X	X	X	-	JJ	2	1.02		12								
		GW	10000		and the second	10	×	x	X	x	x	1	II				19								
PB-5	5	GW		9/ulv	1010	8	х		X	Х	Х	and the		1				-04							
PB-6	6	GW	12.4-	9/21/20	1218	8	x	100	x	X	x	11 m 0 - 4				1244 (17)12	Sec. Sugar	-OS							
PB-8	5	GW	1ª	9/21/20	1335	8	x	- Eleven	X	X-	Х			an Re			d.	-06							
P6-10	G	GW		9/21/20	1142 3	182	X	1	X	Χ.	x	1.000					1.1.1	-02							
SW - Groundwater B - Bioassay NW - WasteWater DW - Drinking Water s	emarks: X Kav amples returned	sos re	Z, b- Hunds	for	1 analy			2000 D.D.D	++++	A COMPANY	+	_ Tem	10000	1.9	COC Sig Bottles Correct	ned/ arri bott	e Receipt C ssent/Intact Accurate: Lve intact: les used: rolume sent:	A A A A							
OT - Other	UPS / FedEx		Time	Rece	king # eived by: (Signat		and the second second) 2-20 1330	2012 C 1		k Recei	XC	es / No HCL / MeoF TBR		Preserv	ration	If Applical adspace: 1 Correct/Cf 10.5 mR/hr:	N/N							
Relinguished by : (Signature)	-F	ate:	Time		eived by: (Signat				148 - 14 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188	emp: 1	AY .			i :	If preserv	vation	required by Lo	gin: Date/Time							
Relinquished by : (Signature)	Da	ate:	Time	: Rece	eived for lab by:	(Signatu	ure) -		- D	ate:	15	Tim	e: 100		Hold:			Pondition:							

A STATE OF A			Billing Info	rmation:		1			A	nalysis /	Contai	ner / Pr	eservative	e'		Shai	in of Custody	Pageof
SCS Engineers - KS	neers - KS Accounts Payable 8575 W. 110th Street				Accounts Payable 8575 W. 110th Street				in lin	**						-/-	Pace	Analytical [®]
Overland Park, KS 66210									514	An						Æ		
Report to:			Email To: c	dreiling@scsengi	neers.com				Disselv	8270	81					1206	55 Lebanon Rd Int Juliet, TN 3	
Doug Dreiling Project Description:		City/State			Please C	irclar		res			1 H					Phor	ne: 615-758-58 ne: 800-767-58	58
Former City Garage Operations		Collected:			PT MT (HCI	loP	101/02.5-	res	-qu	100				Fax:	615-758-5859	回科制語
Phone: 913-681-0030	Client Project C4-052-73			Lab Project # AQUAOPKS-	C40527368	12	40mlAmb	Amb-f	250m1HDPE-HNO3	Amb NoPres	tomIA					SDG	71	312759
Collected by (print): Jeff Jazza	Site/Facility II 27220109.			P.O. #	and a star		LRH 40n	100ml	nHDP		HRH 2	V8260 40mlAmb-HCI-Blk					tnum: AQ	UAOPKS
Collected by (signature):	Rush? (Lab MUST Be Notified) Quote #		ouncul			Scan, LR			8270 100ml	- MRH / HRH 40mlAmb-HCI-B1	[Amb-				Prel	nplate:T17 login: P79	7834	
Immediately Packed on Ice N Y X	Next Da Two Da Three D	νγ5 Day γ10 Day tay	y (Rad Only) ay (Rad Only)	Date Resul	ts Needed	No. of	Full	des -	RCRA Metals	1.125419) 40ml				PB:		
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	8260	Pestic	RCRA	svocs	TPHKSLVI	V826(Ship	Remarks	edEX Ground Sample # (lab only)
PB-4	.5	GW		9/21/20	1035	7	X	in a		х	X	-		-				-08
PB-7	6	GW		9/2/20	1509	7	x	24		x	X	22						-09
PB-9	9	GW		9/21/20	1630	7	X			х	x	1.1		la la			1	- 10
PB-11	4	GW		9/2/20	1445	7	X	1.5		Х	X							-/1
		- GW			1.0.0	7	x			х	X	-	J					
TRIP BLANK 1	-	GW	1.1.8	-	1	1		1999		[p,q](x)		X		1922 IS		14	Constant Marine	-17
TRIP BLANK 2	/	GW	1	1/	1-	1		1		ges f		X		ac al	5	24	$\lambda_{i,j} \in \mathbb{R}^{n}$	-13
RIP BLANK3 JJ		GW		10000000	1000	1		10.0				X	TI			1.		
DVP	5	SW	1	9/21/20	-	10	X	X	X	X	×							-+4
Field Bluk	6	Sw	1	9/21/20	1545	H	13x	FX	×	X	X			en el	in .		1.19	-15-
GW - Groundwater B - Bioassay NW - WasteWater DW - Drinking Water Sa	marks: Rep X Fa mples returned UPS FedEx	vsas k via:	b-Dini Mefha	boto/uen le for all Tracki	analy			lepa 250	+. +'4	рн Flow	260	_ Temp _ Othe	-		Si COC Seal COC Sign Bottles Correct Sufficie VOA Zero	Present ad/Accus arrive bottles nt volur <u>If</u>	intact: used: me_sent: Applicab	NP Y NN NN NN
Relinquished by : (Signature)	Da	te: hzb	Time	830 Recen	ed by: (Signat	ture) 9 M	-22	. 20 330		rip Blan	k Receiv	5 3	es / No HCL / Meol TBR	11 - 14		tion Con	rrect/Che	cked: Y_N
Reliviquished by : (Signature)	Da	ite:	Time	: Receiv	ved by: (Signat	ture)			T.	emp: 7	9.20	C Bott	les Receive	d;	lf preserva	ition requ	ired by Log	in: Date/Time
Relinquished by : (Signature)	Da	ite:	Time	Receiv	red for lab by:	(Signat)	ure)		, D	ater	20.00	Tim	7.0		Hold:			Condition:

Login #: L1265359	Client: AQUAOPKS	Date: 09/23/2020	Evaluated by: Monica R.	

Non-Conformance (check applicable items)

	Sample Integrity	-	Chain of Custody Clarification	
	Parameter(s) past holding time	1	Login Clarification Needed	If Broken Container:
	Temperature not in range		Chain of custody is incomplete	Insufficient packing material around container
	Improper container type		Please specify Metals requested.	Insufficient packing material inside cooler
	pH not in range.		Please specify TCLP requested.	Improper handling by carrier (FedEx / UPS / Con
	Insufficient sample volume.		Received additional samples not listed on coc.	Sample was frozen
	Sample is biphasic.		Sample ids on containers do not match ids on coc	Container lid not intact
	Vials received with headspace.		Trip Blank not received.	If no Chain of Custody:
2	Broken container		Client did not "X" analysis.	Received by:
	Broken container:		Chain of Custody is missing	Date/Time:
	Sufficient sample remains			Temp./Cont. Rec./pH:
				Carrier:
-				Tracking#

Login Comments:

- 1) No HNO3 container received for PB-2.
- 2) One HCL vial received broken for PB-2

Client informed by:	Call	Email	X	Voice Mail	Date: 9/24/20	Time: 0906	
TSR Initials: JC	Client Con	tact: D. Drei	ing				

Login Instructions: 1, 2> Client informed. Metals products need to be removed from PB-2.

ANALYTICAL REPORT

September 28, 2020

SCS Engineers - KS

Sample Delivery Group:	L1265287
Samples Received:	09/23/2020
Project Number:	C4-052-73682
Description:	Former City Garage Operations
Site:	27220109.00
Report To:	Doug Dreiling
	8575 W. 110th Street
	Overland Park, KS 66210

²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

Entire Report Reviewed By:

Jubb law

Jeff Carr Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: SCS Engineers - KS PROJECT: C4-052-73682 SDG: L1265287 DATE/TIME: 09/28/20 13:38

PAGE: 1 of 19

TABLE OF CONTENTS

1 2

3

4

5

5

7

9

11

13

13

17

18

19

*
¹ Cp
² Tc
3

² Tc
³ Ss
⁴ Cn
⁵ Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

ACCOUNT:
SCS Engineers - KS

Cp: Cover Page

Tc: Table of Contents

Ss: Sample Summary Cn: Case Narrative

Sr: Sample Results

AS-1 L1265287-01

AS-2 L1265287-02

DUP L1265287-04

GI: Glossary of Terms

AS-AMB L1265287-03

Qc: Quality Control Summary

Al: Accreditations & Locations

Sc: Sample Chain of Custody

Volatile Organic Compounds (MS) by Method TO-15

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

AS-1 L1265287-01 Air			Collected by Jeff J.	Collected date/time 09/21/20 16:10	Received da 09/23/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15	WG1549178	1	09/25/20 21:52	09/25/20 21:52	DAH	Mt. Juliet, TN
AS-2 L1265287-02 Air			Collected by Jeff J.	Collected date/time 09/21/20 16:12	Received da 09/23/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15	WG1549178	1	09/25/20 22:35	09/25/20 22:35	DAH	Mt. Juliet, TN
AS-AMB L1265287-03 Air			Collected by Jeff J.	Collected date/time 09/21/20 16:14	Received da	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15	WG1549178	1	09/25/20 23:17	09/25/20 23:17	DAH	Mt. Juliet, TN
DUP L1265287-04 Air			Collected by Jeff J.	Collected date/time 09/21/20 00:00	Received da	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15	WG1549178	1	09/25/20 23:59	09/25/20 23:59	DAH	Mt. Juliet, TN

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jubb land

Jeff Carr Project Manager

Τс Ss Cn Sr Qc GI AI Sc

SDG: L1265287 DATE/TIME: 09/28/20 13:38

PAGE: 4 of 19

SAMPLE RESULTS - 01

*

Volatile Organic Compounds (MS) by Method TO-15

Analyte	CAS #	Mol. Wt.	RDL1 ppbv	RDL2 ug/m3	Result ppbv	Result ug/m3	Qualifier	Dilution	Batch	
Acetone	67-64-1	58.10	1.25	2.97	3.00	7.13		1	WG1549178	
Allyl chloride	107-04-1	76.53	0.200	0.626	ND	ND		1	WG1549178	
	71-43-2	78.10	0.200	0.639		ND				
Benzene					ND			1	WG1549178	
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1549178	
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1549178	
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1549178	
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1549178	
,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1549178	
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1549178	
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1549178	
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1549178	
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1549178	
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1549178	
Chloromethane	74-87-3	50.50	0.200	0.413	0.250	0.516		1	WG1549178	
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1549178	
Cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG1549178	
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1549178	
,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1549178	
,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1549178	
,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1549178	
4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1549178	
,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1549178	
1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1549178	
,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1549178	
is-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1549178	
ans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1549178	
2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1549178	
is-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1549178	
ans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1549178	
4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1549178	
	64-17-5	46.10	0.630	1.19	50.8	95.8		1		
thanol									WG1549178	
thylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG1549178	
I-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1549178	
richlorofluoromethane	75-69-4	137.40	0.200	1.12	ND	ND		1	WG1549178	
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.230	1.14		1	WG1549178	
,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1549178	
,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1549178	
leptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1549178	
lexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1549178	
-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG1549178	
sopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1549178	
lethylene Chloride	75-09-2	84.90	0.200	0.694	0.301	1.05		1	WG1549178	
lethyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1549178	
P-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1549178	
-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1549178	
lethyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1549178	
ITBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1549178	
aphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1549178	
-Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG1549178	
ropene	115-07-1	42.10	0.400	0.689	ND	ND		1	WG1549178	
tyrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1549178	
1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1549178	
etrachloroethylene	127-18-4	166	0.200	1.37	ND	ND		1	WG1549178	
etrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1549178	
oluene	109-99-9	92.10	0.200	0.590	0.243	0.915		1	WG1549178	
,2,4-Trichlorobenzene										
,z,+-munorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1549178	

SCS Engineers - KS

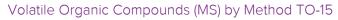
PROJECT: C4-052-73682 SDG: L1265287 DATE/TIME: 09/28/20 13:38

PAGE: 5 of 19

SAMPLE RESULTS - 01

*

GI


Â

Sc

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1549178
I,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1549178
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG1549178
,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1549178
3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1549178
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1549178
'inyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1549178
nyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1549178
'inyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1549178
n&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1549178
Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1549178
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		98.9				WG1549178

<u>پو</u>

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	
nalyte			ppbv	ug/m3	ppbv	ug/m3				
cetone	67-64-1	58.10	1.25	2.97	9.11	21.6		1	WG1549178	
lyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1549178	
enzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG1549178	
enzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1549178	
omodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1549178	
omoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1549178	
omomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1549178	
3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1549178	
arbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1549178	
arbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1549178	
nlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1549178	
nloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1549178	
nloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1549178	
loromethane	74-87-3	50.50	0.200	0.413	0.638	1.32		1	WG1549178	
Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1549178	
vclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG1549178	
promochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1549178	
2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1549178	
2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1549178	
-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1549178	
-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1549178	
-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1549178	
Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1549178	
Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1549178	
-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1549178	
ns-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1549178	
-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1549178	
-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1549178	
ns-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1549178	
-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1549178	
nanol	64-17-5	46.10	0.630	1.19	41.6	78.4		1	WG1549178	
lylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG1549178	
Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1549178	
chlorofluoromethane	75-69-4	137.40	0.200	1.12	0.260	1.46		1	WG1549178	
chlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.567	2.80		1	WG1549178	
2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1549178	
-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1549178	
ptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1549178	
xachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1549178	
lexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG1549178	
propylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1549178	
thylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1549178	
thyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1549178	
Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1549178	
Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1549178	
thyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1549178	
BE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1549178	
phthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1549178	
ropanol	67-63-0	60.10	1.25	3.07	22.6	55.6		1	WG1549178	
pene	115-07-1	42.10	0.400	0.689	ND	ND		1	WG1549178	
rene	100-42-5	104	0.200	0.851	ND	ND		1	WG1549178	
2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1549178	
trachloroethylene	127-18-4	166	0.200	1.36	0.753	5.11		1	WG1549178	
trahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1549178	
luene	108-88-3	92.10	0.200	0.753	0.462	1.74		1	WG1549178	
	120-82-1	181	0.630	4.66	0.402 ND	ND		1		
,4-Trichlorobenzene	[/()-X/-1	181	0 0 30	4 hh	NI)				WG1549178	

SCS Engineers - KS

C4-052-73682

L1265287

09/28/20 13:38

*

GI

Â

Sc

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
I,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1549178
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1549178
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG1549178
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1549178
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1549178
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1549178
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1549178
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1549178
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1549178
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1549178
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1549178
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		98.7				WG1549178

SDG: L1265287

<u>پو</u>

SCS Engineers - KS

Analyte	CAS #	Mol. Wt.	RDL1 ppbv	RDL2 ug/m3	Result ppbv	Result ug/m3	<u>Qualifier</u>	Dilution	<u>Batch</u>	
Acetone	67-64-1	58.10	1.25	2.97	5.53	13.1		1	WG1549178	
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1549178	
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG1549178	
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1549178	
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1549178	
	75-25-2	253	0.600	6.21				1		
Bromoform	75-25-2	253 94.90	0.800	0.21	ND	ND ND			WG1549178	
Bromomethane					ND			1	WG1549178	
,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1549178	
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1549178	
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1549178	
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1549178	
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1549178	
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1549178	
Chloromethane	74-87-3	50.50	0.200	0.413	0.585	1.21		1	WG1549178	
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1549178	
Cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG1549178	
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1549178	
,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1549178	
,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1549178	
,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1549178	
4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1549178	
,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1549178	
1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1549178	
1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1549178	
is-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1549178	
ans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1549178	
2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1549178	
is-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1549178	
ans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1549178	
4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1549178	
thanol	64-17-5	46.10	0.200	1.19	4.41	8.31		1	WG1549178	
	100-41-4	106	0.030	0.867		ND				
thylbenzene					ND			1	WG1549178	
-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1549178	
richlorofluoromethane	75-69-4	137.40	0.200	1.12	0.242	1.36		1	WG1549178	
ichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.550	2.72		1	WG1549178	
,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1549178	
2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1549178	
leptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1549178	
lexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1549178	
-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG1549178	
sopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1549178	
lethylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1549178	
lethyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1549178	
-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1549178	
-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1549178	
lethyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1549178	
1TBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1549178	
aphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1549178	
-Propanol	67-63-0	60.10	1.25	3.07	1.73	4.25		1	WG1549178	
ropene	115-07-1	42.10	0.400	0.689	ND	ND		1	WG1549178	
tyrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1549178	
,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1549178	
etrachloroethylene	127-18-4	166	0.200	1.37	ND	ND		1	WG1549178	
,	127-18-4	72.10	0.200	0.590	ND	ND				
etrahydrofuran								1	WG1549178	
oluene 2,4-Trichlorobenzene	108-88-3 120-82-1	92.10	0.200	0.753	0.493	1.86		1	WG1549178	
	1/0-8/-1	181	0.630	4.66	ND	ND		1	WG1549178	

C4-052-73682

L1265287

9 of 19

09/28/20 13:38

*

GI

Â

Sc

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1549178
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1549178
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG1549178
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1549178
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1549178
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1549178
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1549178
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1549178
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1549178
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1549178
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1549178
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		98.3				WG1549178

SAMPLE RESULTS - 04 L1265287

<u>پو</u>

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	
nalyte			ppbv	ug/m3	ppbv	ug/m3				
cetone	67-64-1	58.10	1.25	2.97	6.64	15.8		1	WG1549178	
llyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1549178	
enzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG1549178	
enzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1549178	
romodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1549178	
romoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1549178	
romomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1549178	
3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1549178	
arbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1549178	
arbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1549178	
hlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1549178	
hloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1549178	
hloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1549178	
hloromethane	74-87-3	50.50	0.200	0.413	0.616	1.27		1	WG1549178	
-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1549178	
cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG1549178	
ibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1549178	
2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1549178	
2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1549178	
3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1549178	
4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1549178	
2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1549178	
1-Dichloroethane	75-34-3	99 98	0.200	0.810	ND	ND		1	WG1549178	
	75-34-3		0.200	0.802	ND	ND		1		
1-Dichloroethene		96.90							WG1549178	
s-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1549178	
ans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1549178	
2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1549178	
s-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1549178	
ans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1549178	
4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1549178	
thanol	64-17-5	46.10	0.630	1.19	119	224	E	1	WG1549178	
thylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG1549178	
-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1549178	
richlorofluoromethane	75-69-4	137.40	0.200	1.12	0.249	1.40		1	WG1549178	
ichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.576	2.85		1	WG1549178	
1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1549178	
2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1549178	
leptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1549178	
lexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1549178	
-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG1549178	
opropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1549178	
lethylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1549178	
lethyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1549178	
-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1549178	
-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1549178	
lethyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1549178	
ITBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1549178	
aphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1549178	
Propanol	67-63-0	60.10	1.25	3.07	2.38	5.85		1	WG1549178	
opene	115-07-1	42.10	0.400	0.689	ND	ND		1	WG1549178	
yrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1549178	
1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1549178	
etrachloroethylene	127-18-4	166	0.200	1.36	0.233	1.58		1	WG1549178	
etrahydrofuran	109-99-9	72.10	0.200	0.590	0.233 ND	ND		1	WG1549178	
oluene	108-88-3	92.10	0.200	0.330	0.525	1.98		1	WG1549178	
2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1549178	
2,7-1101000000000000000000000000000000000	120-02-1	101	0.050	4.00	ND	ND			WUIJ 1 31/0	

SCS Engineers - KS

C4-052-73682

L1265287

09/28/20 13:38

11 of 19

*

GI

Â

Sc

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1549178
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1549178
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG1549178
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1549178
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1549178
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1549178
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1549178
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1549178
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1549178
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1549178
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1549178
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		98.0				WG1549178

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) R3574683-3 09/25/	20 09:33					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	ppbv		ppbv	ppbv		
Acetone	U		0.584	1.25		
Allyl Chloride	U		0.114	0.200		
Benzene	U		0.0715	0.200		
Benzyl Chloride	U		0.0598	0.200		
Bromodichloromethane	U		0.0702	0.200		
Bromoform	U		0.0732	0.600		
Bromomethane	U		0.0982	0.200		
,3-Butadiene	U		0.104	2.00		
Carbon disulfide	U		0.102	0.200		
Carbon tetrachloride	U		0.0732	0.200		
Chlorobenzene	U		0.0832	0.200		
Chloroethane	U		0.0996	0.200		
Chloroform	U		0.0717	0.200		
Chloromethane	U		0.103	0.200		
-Chlorotoluene	U		0.0828	0.200		
Cyclohexane	U		0.0753	0.200		
bibromochloromethane	U		0.0727	0.200		
2-Dibromoethane	U		0.0721	0.200		
2-Dichlorobenzene	U		0.128	0.200		
,3-Dichlorobenzene	U		0.182	0.200		
4-Dichlorobenzene	U		0.0557	0.200		
2-Dichloroethane	U		0.0700	0.200		
1-Dichloroethane	U		0.0723	0.200		
1-Dichloroethene	U		0.0762	0.200		
is-1,2-Dichloroethene	U		0.0784	0.200		
rans-1,2-Dichloroethene	U		0.0673	0.200		
2-Dichloropropane	U		0.0760	0.200		
is-1,3-Dichloropropene	U		0.0689	0.200		
ans-1,3-Dichloropropene	U		0.0728	0.200		
4-Dioxane	U		0.0833	0.200		
thylbenzene	U		0.0835	0.200		
-Ethyltoluene	U		0.0783	0.200		
richlorofluoromethane	U		0.0819	0.200		
Dichlorodifluoromethane	U		0.137	0.200		
	U		0.0793	0.200		
,2-Dichlorotetrafluoroethane	U		0.0890	0.200		
leptane	U		0.104	0.200		
lexachloro-1,3-butadiene	U		0.105	0.630		
-Hexane	U		0.206	0.630		
sopropylbenzene	U		0.0777	0.200		
	-					

SCS Engineers - KS

PROJECT: C4-052-73682 SDG: L1265287 DATE/TIME: 09/28/20 13:38 PAGE: 13 of 19

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) R3574683-3 09/25/2	0 09:33				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
Methylene Chloride	U		0.0979	0.200	
Methyl Butyl Ketone	U		0.133	1.25	
2-Butanone (MEK)	U		0.0814	1.25	
4-Methyl-2-pentanone (MIBK)	U		0.0765	1.25	
Methyl Methacrylate	U		0.0876	0.200	
MTBE	U		0.0647	0.200	
Naphthalene	U		0.350	0.630	
2-Propanol	U		0.264	1.25	
Propene	0.125	J	0.0932	0.400	
Styrene	U		0.0788	0.200	
1,1,2,2-Tetrachloroethane	U		0.0743	0.200	
Tetrachloroethylene	U		0.0814	0.200	
Tetrahydrofuran	U		0.0734	0.200	
Toluene	U		0.0870	0.200	
1,2,4-Trichlorobenzene	U		0.148	0.630	
1,1,1-Trichloroethane	U		0.0736	0.200	
1,1,2-Trichloroethane	U		0.0775	0.200	
Trichloroethylene	U		0.0680	0.200	
1,2,4-Trimethylbenzene	U		0.0764	0.200	
1,3,5-Trimethylbenzene	U		0.0779	0.200	
2,2,4-Trimethylpentane	U		0.133	0.200	
Vinyl chloride	U		0.0949	0.200	
Vinyl Bromide	U		0.0852	0.200	
Vinyl acetate	U		0.116	0.200	
m&p-Xylene	U		0.135	0.400	
o-Xylene	U		0.0828	0.200	
Ethanol	U		0.265	0.630	
(S) 1,4-Bromofluorobenzene	99.2			60.0-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3574683-1 09/25/2	20 08:10 • (LCS	D) R35/4683	-2 09/25/200	8:52							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Ethanol	3.75	3.81	3.73	102	99.5	55.0-148			2.12	25	
Propene	3.75	3.85	3.90	103	104	64.0-144			1.29	25	
Dichlorodifluoromethane	3.75	3.91	3.95	104	105	64.0-139			1.02	25	
1,2-Dichlorotetrafluoroethane	3.75	3.84	3.96	102	106	70.0-130			3.08	25	
Chloromethane	3.75	3.82	3.90	102	104	70.0-130			2.07	25	
											_

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 SCS Engineers - KS
 C4-052-73682
 L1265287
 09/28/20 13:38
 14 of 19

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

Qc

GI

AI

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(ICS) D35746831	00/25/20 02.10 .	(LCSD) R3574683-2	00/25/20 02.52
(LC3) K3374003-1	09/20/20 00.10 •	(LC3D) K3374003-2	09/20/20 00.02

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Vinyl chloride	3.75	3.86	3.98	103	106	70.0-130			3.06	25	
1,3-Butadiene	3.75	3.80	3.84	101	102	70.0-130			1.05	25	
Bromomethane	3.75	3.85	3.98	103	106	70.0-130			3.32	25	
Chloroethane	3.75	3.83	4.15	102	111	70.0-130			8.02	25	
Trichlorofluoromethane	3.75	3.85	3.96	103	106	70.0-130			2.82	25	
1,1,2-Trichlorotrifluoroethane	3.75	3.85	3.94	103	105	70.0-130			2.31	25	
1,1-Dichloroethene	3.75	3.84	3.91	102	104	70.0-130			1.81	25	
1,1-Dichloroethane	3.75	3.84	3.93	102	105	70.0-130			2.32	25	
Acetone	3.75	3.49	3.57	93.1	95.2	70.0-130			2.27	25	
2-Propanol	3.75	3.87	4.05	103	108	70.0-139			4.55	25	
Carbon disulfide	3.75	3.87	3.89	103	104	70.0-130			0.515	25	
Methylene Chloride	3.75	3.74	3.83	99.7	102	70.0-130			2.38	25	
MTBE	3.75	3.81	3.88	102	103	70.0-130			1.82	25	
trans-1,2-Dichloroethene	3.75	3.80	3.93	101	105	70.0-130			3.36	25	
n-Hexane	3.75	3.86	3.96	103	106	70.0-130			2.56	25	
Vinyl acetate	3.75	3.35	3.36	89.3	89.6	70.0-130			0.298	25	
Methyl Ethyl Ketone	3.75	3.76	4.00	100	107	70.0-130			6.19	25	
cis-1,2-Dichloroethene	3.75	3.74	3.85	99.7	103	70.0-130			2.90	25	
Chloroform	3.75	3.78	3.90	101	104	70.0-130			3.13	25	
Cyclohexane	3.75	3.81	3.91	102	104	70.0-130			2.59	25	
1,1,1-Trichloroethane	3.75	3.86	3.99	103	106	70.0-130			3.31	25	
Carbon tetrachloride	3.75	3.86	3.92	103	105	70.0-130			1.54	25	
Benzene	3.75	3.89	3.96	104	106	70.0-130			1.78	25	
1,2-Dichloroethane	3.75	3.90	4.01	104	107	70.0-130			2.78	25	
Heptane	3.75	3.13	3.37	83.5	89.9	70.0-130			7.38	25	
Trichloroethylene	3.75	3.89	3.94	104	105	70.0-130			1.28	25	
1,2-Dichloropropane	3.75	3.94	4.01	105	107	70.0-130			1.76	25	
1,4-Dioxane	3.75	3.72	3.83	99.2	102	70.0-140			2.91	25	
Bromodichloromethane	3.75	3.93	3.92	105	105	70.0-130			0.255	25	
cis-1,3-Dichloropropene	3.75	3.98	4.00	106	107	70.0-130			0.501	25	
4-Methyl-2-pentanone (MIBK)	3.75	3.90	4.01	104	107	70.0-139			2.78	25	
Toluene	3.75	3.89	3.95	104	105	70.0-130			1.53	25	
trans-1,3-Dichloropropene	3.75	3.92	3.95	105	105	70.0-130			0.762	25	
1,1,2-Trichloroethane	3.75	3.87	3.90	103	104	70.0-130			0.772	25	
Tetrachloroethylene	3.75	3.74	3.85	99.7	103	70.0-130			2.90	25	
Methyl Butyl Ketone	3.75	3.83	3.90	102	104	70.0-149			1.81	25	
Dibromochloromethane	3.75	3.94	3.99	105	106	70.0-130			1.26	25	
1,2-Dibromoethane	3.75	3.96	3.97	106	106	70.0-130			0.252	25	
Chlorobenzene	3.75	3.91	3.89	104	104	70.0-130			0.513	25	
Ethylbenzene	3.75	3.84	3.94	102	105	70.0-130			2.57	25	
,				-							
А	CCOUNT:			PRC	JECT:		SDG:			DATE/TIME:	PAGE:
SCS I	Engineers - KS			C4-05	2-73682		L126528	37		09/28/20 13:38	15 of 19

QUALITY CONTROL SUMMARY

Ср

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

		_
(LCS) R3574683-1	09/25/20 08:10 · (LCSD) R3574683-2 09/25/20 08:52	

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
n&p-Xylene	7.50	7.71	7.90	103	105	70.0-130			2.43	25	
o-Xylene	3.75	3.84	3.92	102	105	70.0-130			2.06	25	
Styrene	3.75	3.84	3.94	102	105	70.0-130			2.57	25	
Bromoform	3.75	3.86	3.96	103	106	70.0-130			2.56	25	
I,1,2,2-Tetrachloroethane	3.75	3.80	3.90	101	104	70.0-130			2.60	25	
4-Ethyltoluene	3.75	3.85	3.97	103	106	70.0-130			3.07	25	
l,3,5-Trimethylbenzene	3.75	3.82	3.94	102	105	70.0-130			3.09	25	
I,2,4-Trimethylbenzene	3.75	3.80	3.91	101	104	70.0-130			2.85	25	
l,3-Dichlorobenzene	3.75	3.85	4.01	103	107	70.0-130			4.07	25	
l,4-Dichlorobenzene	3.75	3.89	4.02	104	107	70.0-130			3.29	25	
Benzyl Chloride	3.75	4.16	4.24	111	113	70.0-152			1.90	25	
l,2-Dichlorobenzene	3.75	3.87	3.93	103	105	70.0-130			1.54	25	
I,2,4-Trichlorobenzene	3.75	3.97	4.07	106	109	70.0-160			2.49	25	
Hexachloro-1,3-butadiene	3.75	4.09	4.21	109	112	70.0-151			2.89	25	
Naphthalene	3.75	3.87	4.03	103	107	70.0-159			4.05	25	
Allyl Chloride	3.75	3.61	4.32	96.3	115	70.0-130			17.9	25	
2-Chlorotoluene	3.75	3.77	3.94	101	105	70.0-130			4.41	25	
Methyl Methacrylate	3.75	3.71	3.81	98.9	102	70.0-130			2.66	25	
Fetrahydrofuran	3.75	3.79	3.94	101	105	70.0-137			3.88	25	
2,2,4-Trimethylpentane	3.75	3.90	4.00	104	107	70.0-130			2.53	25	
/inyl Bromide	3.75	3.88	3.94	103	105	70.0-130			1.53	25	
sopropylbenzene	3.75	3.78	3.93	101	105	70.0-130			3.89	25	
(S) 1,4-Bromofluorobenzene				97.5	98.5	60.0-140					

PROJECT: C4-052-73682 SDG: L1265287 DATE/TIME: 09/28/20 13:38

PAGE: 16 of 19

GLOSSARY OF TERMS

₩

Τс

ŚS

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.

PROJECT: C4-052-73682 SDG: L1265287 DATE/TIME: 09/28/20 13:38

PAGE: 17 of 19

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshire
Arkansas	88-0469	New Jersey–NEI
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina ¹
Georgia	NELAP	North Carolina ³
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio–VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky 16	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ¹⁴
Louisiana 1	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Vebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

SCS Engineers - KS

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

C4-052-73682

L1265287

PAGE: 18 of 19

09/28/20 13:38

			Billing Information:				Analysis / Container / Preservative							Chain of Custody Page of		
SCS Engineers - KS 8575 W. 110th Street Overland Park, KS 66210			Accounts Payable 8575 W. 110th Street Overland Park, KS 66210												Pace. National Ca	Analytical* Inter for Testing & Innovation
			Email To: d	dreiling@scser	gineers.com	_									12065 Lebanon Rd	
Report to: Doug Dreiling				urening@seser	Buccision						-			1	Mount Juliet, TN 37 Phone: 615-758-58 Phone: 800-767-58	· Canado
Project Description: City/Stat		City/State Collected:			Please Cir PT MT C										Fax: 615-758-5859	
Phone: 913-681-0030	L3-681-0030 Client Project # C4-052-73682			S-C405273682										SDG # 165287		
Collected by (print): Jeff Janson	Site/Facility ID # 27220109.00			P.O. #											Acctnum: AQ	
Collected by (signature):	Same Da		Day	Quote # Date Re:	sults Needed	No. of	Summa								Template: T17 Prelogin: P79 PM: 206 - Jeff PB: <u>CSC</u>	7735 ^{Carr} //
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	T0-15								Remarks	Sample # (lab only
AS-1	6	Air	NA	9/21/2	0819-1610	1	X	2								61
AS-1 AS-2 AS-AMB	1	Air			0822-16/2	1	X									62
AS-AMB		Air			0823-16/9	1	X									67
DUP	V	Air	¥	V	-	1	X						100			•4
								12					and the second se			
								100		1-						
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	marks:				-				pH Flow	-	Temp Other		Bottle	eal Pre- igned/A es arri- ct bott	ve intact: les used:	
OT - Other	mples returned UPS FedEx	Courie	and the second se		acking #/4/1	17	165	484	43				Sufficient volume sen If Applic VOA Zero Headspace: Preservation Correct/0			able _YY
Relinquished by : (Signature)	2 0.	1/22/	Time Time Time	130 /	ceived by: (Signat	soc		30		k Receive		/ MeoH	RAD S	creen <	0.5 mR/hr:	gin: Date/Time
Relinquished by : (Signature)	Da	ate:	lim	e. Ke	cerved by. (Signal				Temp: AM		4	9				
Relinquished by : (Signature)	Da	ate:	Tim	e: Re	ceived for lab by:		ture) Wer	1	Date:	3/20	Time:	02)	Hold:			Condition; NCF / OK